Drowsiness and lack of attention are some of the most fatal and underrated accident causes while driving. In this thesis a non intrusive classifier based on features from drivers' facial movements has been developed, focusing on detection strategies that could be deployed on low-complexity devices, like smartphones. Different classification architectures will be proposed and studied in order to understand which implementation performed the best in terms of detection accuracy.
Driver attention analysis and drowsiness detection using mobile devices
Ceccato, Simone
2020/2021
Abstract
Drowsiness and lack of attention are some of the most fatal and underrated accident causes while driving. In this thesis a non intrusive classifier based on features from drivers' facial movements has been developed, focusing on detection strategies that could be deployed on low-complexity devices, like smartphones. Different classification architectures will be proposed and studied in order to understand which implementation performed the best in terms of detection accuracy.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
SimoneCeccatoMasterThesisDEI.pdf
Open Access dal 21/12/2022
Dimensione
8.62 MB
Formato
Adobe PDF
|
8.62 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.12608/28823