Neck injuries resulting from motorcycle accidents is a recurrent problem. To prevent the injury risks, companies have started to develop specific personal protective equipment for the protection of the cervical spine. Neck braces are part of PPE for neck protection developed to reduce the chance of neck injury by reducing range of motion and load on the neck. However, the efficiency of these devices is still under discussion since a standardized test method for their assessment still doesn’t exist. This thesis work focuses on the prototyping and validation of an instrumented biofidelic neck surrogate for the assessment of neck protectors. The components of the new biofidelic neck surrogate were obtained by additive Selective Laser Sintering (SLS) technology and the neck vertebras were manufactured by casting a silicon rubber on the neck components in a proper mould. The overall stiffness of the neck can be modulated by means of stiffening components. Static and dynamic tests were carried out for the evaluation of the mechanical properties of the neck and comparison with previous prototypes and cadaveric data were made when possible. A second goal of this work was the instrumentation of the new neck surrogate to measure bending movements and loads acting on the neck. A six-axis load cell was placed on the top of the neck to measure loads at the Occipital condyles level. An instrumented base was developed to measure bending movements of the neck in frontal and sagittal plane by mean of rotary potentiometers, moreover, this base allows to fix the new neck surrogate on the Hybrid III torso. Finally, pilot tests were conducted to evaluate the neck braces effectiveness. A pendulum was used to induce a rotational motion of the Hybrid III dummy neck. Tests were conducted with two different neck surrogates, the stiff Hybrid III neck and the instrumented biofidelic neck surrogate developed in this thesis. Peak neck angles reached as a result of the impacts were considered to compare tests with and without neck brace and with the two different neck surrogates. Results highlight that the Hybrid III neck requires very high energies to reach a range of motion that engages the neck brace while the biofidelic neck requires much lower energies. However, the biofidelic neck has proved to be still too brittle to perform significant impact tests. Further development will improve the current neck prototype and other test method for the assessment of neck protectors will be proposed.
Le lesioni al collo a seguito di incidenti in moto sono un problema ricorrente. Per prevenire il rischio di lesione, le aziende hanno iniziato a sviluppare dispositivi specifici per la protezione del collo. I protettori per il collo fanno parte dei dispositivi di protezione personale progettati per ridurre la possibilità di lesione del collo limitando il suo movimento e riducendo i carichi a cui è sottoposto. Tuttavia, l’efficacia di questi dispositivi è ancora oggi messa in discussione in quanto non è stato ancora definito un metodo standard per testarli. Questo lavoro di tesi si focalizza sulla prototipazione e validazione di un surrogato di collo biofedele sensorizzato per la valutazione dei protettori del collo. I componenti del nuovo collo biofedele sono stati ottenuti attraverso la tecnologia additiva Selective Laser Sintering (SLS) e le vertebre sono state realizzate colando una gomma siliconica nei componenti mediante l’utilizzo di uno stampo. La rigidezza del collo può essere modulata con componenti di irrigidimento. Sono stati eseguiti test statici e dinamici per valutare le proprietà meccaniche del nuovo collo e i risultati sono stati confrontati (quando possibile) con quelli ottenuti con i prototipi precedenti. Un secondo obbiettivo di questo lavoro è stata la sensorizzazione del collo per misurare gli angoli di movimento e i carichi che agiscono su di esso. Una cella di carico a sei assi è stata posta in cima al collo per misurare i carichi a livello dei condili occipitali. É stata progettata una base sensorizzata per misurare gli angoli di piegamento del collo lungo il piano frontale e sagittale, inoltre questa base permette il fissaggio del collo sul busto del manichino Hybrid III. Infine, sono stati eseguiti dei test di prova per valutare l’efficacia dei protettori per il collo. Per eseguire le prove è stato utilizzato un pendolo per colpire la testa del manichino Hybrid III provocando la flessione del collo. I test sono stati svolti con due diversi tipi di surrogati del collo: il rigido collo Hybrid III e il collo biofedele sensorizzato sviluppato in questa tesi. Per confrontare i risultati dei test condotti con e senza protettore e con i due diversi surrogati del collo sono stati considerati gli angoli di picco raggiungi dal collo a seguito dell’impatto. I risultati hanno evidenziato che le prove eseguite con il collo Hybrid III richiedono energie di impatto molto elevate per raggiungere angoli di flessione tali da impegnare il protettore, mentre le prove eseguite con il collo biofedele richiedono energie di impatto molto più basse. Tuttavia, il collo biofedele si è dimostrato ancora troppo fragile per poter eseguire test d’impatto significativi. Sviluppi futuri miglioreranno il prototipo realizzato in termini di biofedeltà e resistenza strutturale e ulteriori metodi di prova per testare i protettori per il collo saranno proposti.
Functional evaluation of an instrumented biofidelic neck surrogate for the assessment of neck protectors
GUIDOLIN, FEDERICO
2021/2022
Abstract
Neck injuries resulting from motorcycle accidents is a recurrent problem. To prevent the injury risks, companies have started to develop specific personal protective equipment for the protection of the cervical spine. Neck braces are part of PPE for neck protection developed to reduce the chance of neck injury by reducing range of motion and load on the neck. However, the efficiency of these devices is still under discussion since a standardized test method for their assessment still doesn’t exist. This thesis work focuses on the prototyping and validation of an instrumented biofidelic neck surrogate for the assessment of neck protectors. The components of the new biofidelic neck surrogate were obtained by additive Selective Laser Sintering (SLS) technology and the neck vertebras were manufactured by casting a silicon rubber on the neck components in a proper mould. The overall stiffness of the neck can be modulated by means of stiffening components. Static and dynamic tests were carried out for the evaluation of the mechanical properties of the neck and comparison with previous prototypes and cadaveric data were made when possible. A second goal of this work was the instrumentation of the new neck surrogate to measure bending movements and loads acting on the neck. A six-axis load cell was placed on the top of the neck to measure loads at the Occipital condyles level. An instrumented base was developed to measure bending movements of the neck in frontal and sagittal plane by mean of rotary potentiometers, moreover, this base allows to fix the new neck surrogate on the Hybrid III torso. Finally, pilot tests were conducted to evaluate the neck braces effectiveness. A pendulum was used to induce a rotational motion of the Hybrid III dummy neck. Tests were conducted with two different neck surrogates, the stiff Hybrid III neck and the instrumented biofidelic neck surrogate developed in this thesis. Peak neck angles reached as a result of the impacts were considered to compare tests with and without neck brace and with the two different neck surrogates. Results highlight that the Hybrid III neck requires very high energies to reach a range of motion that engages the neck brace while the biofidelic neck requires much lower energies. However, the biofidelic neck has proved to be still too brittle to perform significant impact tests. Further development will improve the current neck prototype and other test method for the assessment of neck protectors will be proposed.File | Dimensione | Formato | |
---|---|---|---|
Guidolin_Federico.pdf
embargo fino al 21/04/2025
Dimensione
14.26 MB
Formato
Adobe PDF
|
14.26 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/29644