Background: hepatocellular carcinoma is the first primary liver cancer and it develops in 90% in a background of progressive chronic liver disease. Therefore, patients suffering from liver cirrhosis and from liver chronic disease related to chronic HBV infection should be evalueted every 6 months by liver ultrasound as screening program. At serological level, the marker currently used in clinical practice is αFP, which however has poor diagnostic accuracy. In order to achieve an early and non-invasive diagnosis, other serum biomarkers are currently studied such as αFP-L3, PIVKA-II, GP73 and SCCA-IgM. Aim: this study aims to create a statistical-mathematical model that find out which patients suffering from cirrhosis will develop hepatocellular carcinoma, using clinical and laboratory information. Materials and Methods: the study has included 217 patients, 92 suffering from liver cirrhosis; 28 with liver cirrhosis complicated by hepatocellular carcinoma during the follow-up; 28 with liver cirrhosis not complicated by hepatocellular carcinoma during the follow-up; 69 with hepatocellular carcinoma. The different groups of patients were used as training set, in particular, the groups of patients with liver cirrhosis alone (n = 92) and those with hepatocarcinoma (n = 69) were used to create a classifier based on the Random Forest model and one based on Random Ferns. The groups of patients with liver cirrhosis who developed hepatocarcinoma during follow-up (n = 28) and with cirrhosis without hepatocarcinoma development during follow-up (n = 28) were used to create a classifier based on the Random Forest model, a model based on Random Ferns and an additional Ensamble approach. Results: Random Forest and Random Ferns models, trained with data from patients with liver cirrhosis and from patients with hepatocarcinoma, showed similar performance and were able to correctly classify the patients used for their training. Random Forest Model showed an accuracy of 0,6770 (F1 score 0,7283). Random Ferns showed an accuracy of 0,7143 (F1 score 0,7326). When Random Forest and Random Ferns Models were used to train datasets of evolutive liver cirrhosis and non-evolutive liver cirrhosis, they were not able to correctly classify these two different groups of patients. However, Superlearner, generated by Ensemble approach and validated with v-fold cross validation (v: 20), was able to correctly classify patients with cancer development from those who did not develop liver cancer with accuracy of 1,0. External validation on patients suffering from liver cirrhosis showed a Specificity of 83,7%, proving the good algorithm’s potentiality. Conclusions: the algorithms used in this study have allowed the development of innovative models both for the diagnosis of hepatocellular carcinoma and for the prognosis of liver cirrhosis. These models exploit clinical features and laboratory variables, leading to personalized assessment of each patient. For this reason they are part of the worldwide accepted notion of tailored medicine. They also corroborate the relevance of the biomarker SCCA-IgM in the management of chronic liver disease and hepatocarcinoma.
Presupposti dello studio: l’epatocarcinoma è la principale neoplasia primitiva del fegato ed è una neoplasia che si sviluppa nel 90% dei casi in pazienti affetti da malattia epatica cronica evolutiva. Per tale motivo i soggetti affetti da cirrosi epatica ed epatopatia evolutiva correlata ad infezione cronica da virus dell’epatite B sono sottoposti a screening ogni sei mesi mediante ecografia epatica. A livello bioumorale il marcatore correntemente utilizzato nella pratica clinica è l’αFP, che tuttavia presenta una mediocre accuratezza diagnostica. Nel tentativo di implementare la diagnosi precoce e non invasiva di malattia si stanno studiando altri marcatori sierici, quali ad esempio αFP-L3, PIVKA-II, GP73 e SCCA-IgM. Scopo dello studio: con il nostro lavoro ci siamo proposti di creare un modello matematico-statistico che, mediante l’integrazione di informazioni cliniche e di laboratorio, permetta di prevedere lo sviluppo di epatocarcinoma nei soggetti affetti da cirrosi epatica. Materiali e metodi: lo studio si compone di 217 pazienti (suddivisi in quattro gruppi), 92 affetti da sola cirrosi epatica; 28 affetti da cirrosi epatica e che hanno sviluppato epatocarcinoma nel corso dello studio; 28 affetti da cirrosi epatica e che non hanno sviluppato epatocarcinoma nel corso dello studio; 69 pazienti affetti da cirrosi epatica complicata da epatocarcinoma già al momento dell’arruolamento. I sottogruppi del campione sono stati utilizzati per addestrare dei classificatori di cui si sono poi studiate le caratteristiche. In particolare i sottogruppi di pazienti affetti da sola cirrosi epatica (n=92) ed i soggetti affetti da epatocarcinoma (n=69) sono stati usati per creare un classificatore basato su modello Random Forest e uno basato su Random Ferns. I sottogruppi di pazienti affetti da cirrosi epatica complicata da epatocarcinoma nel corso di follow-up (n=28) e non complicata da epatocarcinoma nel corso del follow-up (n=28) sono stati usati per creare un classificatore basato su modello Random Forest, uno basato su Random Ferns e uno secondo approccio Ensemble. Risultati: i modelli Random Forest e Random Ferns addestrati con i dati dei pazienti affetti da sola cirrosi epatica e affetti da epatocarcinoma insorto su cirrosi epatica hanno mostrato prestazioni simili nel classificare in modo corretto i pazienti utilizzati per il loro addestramento. Il modello Random Forest ha mostrato un’accuratezza di 0,6770 (F1 score 0,7283). Il modello Random Ferns ha mostrato un’accuratezza di 0,7143 (F1 score 0,7326). I modelli Random Forest e Random Ferns addestrati con i set di dati dei pazienti affetti da cirrosi epatica evolutiva e non evolutiva non hanno dato risultati accettabili. L’approccio Ensemble ha generato un algoritmo superlearner (con v-fold cross validation v:20) in grado di discriminare con accuratezza 1,0 i pazienti a rischio di evoluzione da quelli non a rischio di evoluzione. La validazione esterna sul campione di pazienti affetti da sola cirrosi epatica ha confermato in parte la validità dell’algoritmo, mostrando una specificità dello 83,7%. Conclusioni: gli algoritmi utilizzati in questo studio hanno permesso di creare modelli innovativi per la diagnosi di epatocarcinoma e per la prognosi dei pazienti affetti da cirrosi epatica. Questi sfruttano caratteristiche cliniche e variabili laboratoristiche che permettono una valutazione d’insieme del singolo paziente. In questo senso tali modelli rientrano in quello che è l’ormai accettato concetto di medicina personalizzata. Essi inoltre hanno permesso di corroborare l’imporanza di SCCA-IgM nel contesto della malattia epatica cronica e dell’epatocarcinoma.
Score prognostico per lo sviluppo di epatocarcinoma nella cirrosi epatica
STEFANELLI, DAVIDE
2021/2022
Abstract
Background: hepatocellular carcinoma is the first primary liver cancer and it develops in 90% in a background of progressive chronic liver disease. Therefore, patients suffering from liver cirrhosis and from liver chronic disease related to chronic HBV infection should be evalueted every 6 months by liver ultrasound as screening program. At serological level, the marker currently used in clinical practice is αFP, which however has poor diagnostic accuracy. In order to achieve an early and non-invasive diagnosis, other serum biomarkers are currently studied such as αFP-L3, PIVKA-II, GP73 and SCCA-IgM. Aim: this study aims to create a statistical-mathematical model that find out which patients suffering from cirrhosis will develop hepatocellular carcinoma, using clinical and laboratory information. Materials and Methods: the study has included 217 patients, 92 suffering from liver cirrhosis; 28 with liver cirrhosis complicated by hepatocellular carcinoma during the follow-up; 28 with liver cirrhosis not complicated by hepatocellular carcinoma during the follow-up; 69 with hepatocellular carcinoma. The different groups of patients were used as training set, in particular, the groups of patients with liver cirrhosis alone (n = 92) and those with hepatocarcinoma (n = 69) were used to create a classifier based on the Random Forest model and one based on Random Ferns. The groups of patients with liver cirrhosis who developed hepatocarcinoma during follow-up (n = 28) and with cirrhosis without hepatocarcinoma development during follow-up (n = 28) were used to create a classifier based on the Random Forest model, a model based on Random Ferns and an additional Ensamble approach. Results: Random Forest and Random Ferns models, trained with data from patients with liver cirrhosis and from patients with hepatocarcinoma, showed similar performance and were able to correctly classify the patients used for their training. Random Forest Model showed an accuracy of 0,6770 (F1 score 0,7283). Random Ferns showed an accuracy of 0,7143 (F1 score 0,7326). When Random Forest and Random Ferns Models were used to train datasets of evolutive liver cirrhosis and non-evolutive liver cirrhosis, they were not able to correctly classify these two different groups of patients. However, Superlearner, generated by Ensemble approach and validated with v-fold cross validation (v: 20), was able to correctly classify patients with cancer development from those who did not develop liver cancer with accuracy of 1,0. External validation on patients suffering from liver cirrhosis showed a Specificity of 83,7%, proving the good algorithm’s potentiality. Conclusions: the algorithms used in this study have allowed the development of innovative models both for the diagnosis of hepatocellular carcinoma and for the prognosis of liver cirrhosis. These models exploit clinical features and laboratory variables, leading to personalized assessment of each patient. For this reason they are part of the worldwide accepted notion of tailored medicine. They also corroborate the relevance of the biomarker SCCA-IgM in the management of chronic liver disease and hepatocarcinoma.File | Dimensione | Formato | |
---|---|---|---|
Stefanelli_Davide.pdf
accesso aperto
Dimensione
2.13 MB
Formato
Adobe PDF
|
2.13 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/30754