The purpose of this work is the preliminary design of a miniaturized bio-insipired hexapod robot for the exploration of Martian lava tubes, i.e. the underground conduits formed through the lava activity of non-explosive volcanoes. For this purpose, a suite of sensor was chosen for the characterization of these environments. With the aim of mapping the caves, the hexapod has been equipped with a camera and a series of sensors were also identified to measure the presence of perchlorate, the dose of radiation that passes the basaltic layer, the temperature and the relative humidity inside the lava tubes. In this work, the reasons for choosing this type of analysis are also explained, along with the identified instruments. The choice of sensors to accommodate in the hexapod led to have the preliminary dimensions of the robot, so that a decision could be made on the configuration. The configuration chosen consists of a rectangular central body with the six legs arranged symmetrically along the longest side, the legs were designed based on those of insects. Being an initial design, it was used the simplest configuration to verify the components and the possible realisation of it. The robot was reproduced using Solidworks and then imported in Simulink. The main chapter is focused on the simulation of the robot and its motion through the MATLAB&Simulink environment so that the possibility of using the smallest servos found on the market can be verified, through the sensing of the torques required by the rover. The inverse kinematics method was used to impose a semi-elliptical trajectory on the legs through dedicated scripts and functions that create the vectors of the position profiles, the velocity profiles and, finally, the vectors of the acceleration profiles that have been set trapezoidal to avoid problems due to discontinuities. Three types of gaits were tested: metachronal, ripple and tripod gait, corresponding to three speeds of the robot. It was possible to verify the use of servos through modelling, as the limits imposed by them were respected.
Lo scopo di questo lavoro è la progettazione preliminare di un robot esapode miniaturizzato bio-insipired per l'esplorazione dei tubi lavici marziani, ovvero i condotti sotterranei formati dall'attività lavica di vulcani non esplosivi. A tal fine, è stata scelta una suite di sensori per la caratterizzazione di questi ambienti. Con l'obiettivo di mappare le grotte, l'esapode è stato equipaggiato con una telecamera e sono stati individuati anche una serie di sensori per misurare la presenza di perclorato, la dose di radiazioni che passa lo strato basaltico, la temperatura e l'umidità relativa all'interno dei tubi di lavici. In questo lavoro vengono spiegate anche le ragioni della scelta di questo tipo di analisi e gli strumenti individuati. La scelta dei sensori da ospitare nell'esapode ha portato ad avere le dimensioni preliminari del robot, in modo da poterne decidere la configurazione. La configurazione scelta consiste in un corpo centrale rettangolare con le sei zampe disposte simmetricamente lungo il lato più lungo; le zampe sono state progettate basandosi su quelle degli insetti. Essendo un dimensionamento iniziale, è stata utilizzata la configurazione più semplice per verificare i componenti e la possibile realizzazione. Il robot è stato riprodotto con Solidworks e poi importato in Simulink. Il capitolo principale è incentrato sulla simulazione del robot e del suo movimento attraverso l'ambiente MATLAB&Simulink, in modo da verificare la possibilità di utilizzare i servi più piccoli presenti sul mercato, attraverso il rilevamento delle coppie richieste dal rover. Il metodo della cinematica inversa è stato utilizzato per imporre una traiettoria semiellittica alle gambe attraverso script e funzioni dedicate che creano i vettori dei profili di posizione, di velocità e infine i vettori dei profili di accelerazione che sono stati impostati trapezoidali per evitare problemi dovuti a discontinuità. Sono stati testati tre tipi di andature: metacronale, ondulata e tripode, corrispondenti a tre velocità del robot. È stato possibile verificare l'uso dei servi attraverso la modellazione, in quanto sono stati rispettati i limiti imposti da questi ultimi.
DESIGN OF A MINIATURISED HEXAPOD ROVER FOR MARTIAN EXPLORATION
TERLIZZI, IRENE
2021/2022
Abstract
The purpose of this work is the preliminary design of a miniaturized bio-insipired hexapod robot for the exploration of Martian lava tubes, i.e. the underground conduits formed through the lava activity of non-explosive volcanoes. For this purpose, a suite of sensor was chosen for the characterization of these environments. With the aim of mapping the caves, the hexapod has been equipped with a camera and a series of sensors were also identified to measure the presence of perchlorate, the dose of radiation that passes the basaltic layer, the temperature and the relative humidity inside the lava tubes. In this work, the reasons for choosing this type of analysis are also explained, along with the identified instruments. The choice of sensors to accommodate in the hexapod led to have the preliminary dimensions of the robot, so that a decision could be made on the configuration. The configuration chosen consists of a rectangular central body with the six legs arranged symmetrically along the longest side, the legs were designed based on those of insects. Being an initial design, it was used the simplest configuration to verify the components and the possible realisation of it. The robot was reproduced using Solidworks and then imported in Simulink. The main chapter is focused on the simulation of the robot and its motion through the MATLAB&Simulink environment so that the possibility of using the smallest servos found on the market can be verified, through the sensing of the torques required by the rover. The inverse kinematics method was used to impose a semi-elliptical trajectory on the legs through dedicated scripts and functions that create the vectors of the position profiles, the velocity profiles and, finally, the vectors of the acceleration profiles that have been set trapezoidal to avoid problems due to discontinuities. Three types of gaits were tested: metachronal, ripple and tripod gait, corresponding to three speeds of the robot. It was possible to verify the use of servos through modelling, as the limits imposed by them were respected.File | Dimensione | Formato | |
---|---|---|---|
Terlizzi_Irene.pdf
accesso aperto
Dimensione
3.37 MB
Formato
Adobe PDF
|
3.37 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/30980