This study examines the concept of Laser-driven light sails, which is one of the most promising proposals put forward to overcome the challenges posed by interstellar travel. This is a propulsion method based on the phenomenon of radiation pressure where a body stricken by an electromagnetic radiation undergoes a pressure. Laser-driven light sails generate thrust using a high-power laser, whose beam impacts the surface of an ultralight probe, formed by a large sail and a small payload, allowing them to reach relativistic speeds in a short amount of time. This concept is then compared with other methods of laser propulsion, evaluating the various advantages and disadvantages. Two mathematical models of motion are then derived, which are then compared by showing that the classical approximation is not sufficient, and it is therefore necessary to consider the relativistic correction. The relationship between the final acceleration distance and the characteristics of the launch laser system is derived, from which we obtain the point of maximum efficiency through which the necessary power to reach a given final speed can be calculated. This objective depends on the structural characteristics of the probe in question. Finally, we try to maximize its efficiency by abiding the optical constraints and calculating the thermodynamic ones, which will determine the necessary characteristics of the material suitable for the sail.
In questo studio viene preso in esame il concetto di Laser-driven light sails, il quale è una delle più promettenti proposte avanzate per superare le sfide poste dal viaggio interstellare. Questo è un metodo di propulsione che si basa sul fenomeno della pressione di radiazione: un corpo colpito da una radiazione elettromagnetica subisce una pressione. Questo meccanismo viene applicato attraverso l’utilizzo di un laser ad alta potenza, il quale raggio impatta sulla superficie di una sonda ultraleggera, formata da una vela di grandi dimensioni e da un piccolo carico, permettendole di raggiungere velocità relativistiche in un corto lasso di tempo. Questo concetto viene successivamente comparato con altri metodi di propulsione laser, valutandone i vari vantaggi e svantaggi. Vengono poi derivati due modelli matematici di moto, i quali sono confrontati dimostrando come l’approssimazione classica non è sufficiente ed è quindi necessario tener conto della correzione relativistica. Si deriva la relazione tra la distanza finale di accelerazione e le caratteristiche del sistema laser di lancio, dalla quale si ottiene il punto di massima efficienza attraverso cui può essere calcolata la potenza necessaria per raggiungere una data velocità finale. Obiettivo, questo, che dipende dalle caratteristiche strutturali della sonda in questione. Si cerca infine di massimizzarne l’efficienza rispettando i vincoli ottici e calcolando quelli termodinamici, i quali determineranno le caratteristiche necessarie per il materiale adeguato alla vela.
Laser-driven light sails, a possible way for interstellar exploration
TRENTI, STEFANO
2021/2022
Abstract
This study examines the concept of Laser-driven light sails, which is one of the most promising proposals put forward to overcome the challenges posed by interstellar travel. This is a propulsion method based on the phenomenon of radiation pressure where a body stricken by an electromagnetic radiation undergoes a pressure. Laser-driven light sails generate thrust using a high-power laser, whose beam impacts the surface of an ultralight probe, formed by a large sail and a small payload, allowing them to reach relativistic speeds in a short amount of time. This concept is then compared with other methods of laser propulsion, evaluating the various advantages and disadvantages. Two mathematical models of motion are then derived, which are then compared by showing that the classical approximation is not sufficient, and it is therefore necessary to consider the relativistic correction. The relationship between the final acceleration distance and the characteristics of the launch laser system is derived, from which we obtain the point of maximum efficiency through which the necessary power to reach a given final speed can be calculated. This objective depends on the structural characteristics of the probe in question. Finally, we try to maximize its efficiency by abiding the optical constraints and calculating the thermodynamic ones, which will determine the necessary characteristics of the material suitable for the sail.File | Dimensione | Formato | |
---|---|---|---|
Trenti_Stefano.pdf
accesso aperto
Dimensione
7.13 MB
Formato
Adobe PDF
|
7.13 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/31665