In the context of computational mechanics, the imposition of boundary conditions is of relevant importance. Often, in engineering problems related to large deformations, the boundary of the body does not coincide with the one of the computational mesh. Various strategies are described in literature and in this thesis, non-conforming boundary conditions will be addressed through the use of Lagrange multipliers. These have been employed in the finite element method and the particle method known as the Material Point Method (MPM).
Nell'ambito della meccanica computazionale risulta di rilevante importanza l'imposizione delle condizioni al contorno. Spesso, nell'ambito di problemi ingegneristici legati a grandi deformazioni, la frontiera del corpo non coincide con quella della maglia computazionale. Varie strategie sono descritte in letteratura ed in questa tesi verranno trattate le condizioni al contorno non conformi mediante l'utilizzo dei moltiplicatori di Lagrange. Questi ultimi sono stati impiegati nel metodo degli elementi finiti e nel metodo particellare noto come Material Point Method (MPM).
Condizioni al Contorno non Conformi nei metodi degli Elementi Finiti e particellari
COMERCI, NICOLA
2021/2022
Abstract
In the context of computational mechanics, the imposition of boundary conditions is of relevant importance. Often, in engineering problems related to large deformations, the boundary of the body does not coincide with the one of the computational mesh. Various strategies are described in literature and in this thesis, non-conforming boundary conditions will be addressed through the use of Lagrange multipliers. These have been employed in the finite element method and the particle method known as the Material Point Method (MPM).File | Dimensione | Formato | |
---|---|---|---|
Comerci_Nicola.pdf
accesso aperto
Dimensione
5.01 MB
Formato
Adobe PDF
|
5.01 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/31979