Optimization is a branch of mathematics that deals with methods for finding local and/or global maximum/minimum of functions that mainly represent costs related to the economy or the efficiency of an algorithm. In this thesis I will describe the theoretical aspects of convex optimization, or taking into consideration functions that have at most one critical point, defined on discrete and continuous numerical domains; I will also investigate the problem of constrained optimization, so the admissible results live in a defined and limited interval, using the concept of duality. I will compare the main results of Newton's method and of the gradient.

L’ottimizzazione è una branca della matematica che si occupa di metodi per la ricerca di massimi/minimi locali e/o globali di funzioni che rappresentano soprattutto costi legato all’economia o all’efficienza di un algoritmo. In questa tesi descriverò gli aspetti teorici dell’ottimizzazione convessa, ovvero prendendo in considerazione funzioni che hanno al massimo un punto critico, definite su domini numerici, discreti e continui; inoltre approfondirò il problema dell’ottimizzazione vincolata, quindi i risultati ammissibili vivono in un intervallo definito e limitato, usando il concetto di dualità. Confronterò i risultati principali del metodo di Newton e del gradiente.

Fondamenti di ottimizzazione convessa

BELTRAME, LEONARDO
2021/2022

Abstract

Optimization is a branch of mathematics that deals with methods for finding local and/or global maximum/minimum of functions that mainly represent costs related to the economy or the efficiency of an algorithm. In this thesis I will describe the theoretical aspects of convex optimization, or taking into consideration functions that have at most one critical point, defined on discrete and continuous numerical domains; I will also investigate the problem of constrained optimization, so the admissible results live in a defined and limited interval, using the concept of duality. I will compare the main results of Newton's method and of the gradient.
2021
Introductory convex optimization
L’ottimizzazione è una branca della matematica che si occupa di metodi per la ricerca di massimi/minimi locali e/o globali di funzioni che rappresentano soprattutto costi legato all’economia o all’efficienza di un algoritmo. In questa tesi descriverò gli aspetti teorici dell’ottimizzazione convessa, ovvero prendendo in considerazione funzioni che hanno al massimo un punto critico, definite su domini numerici, discreti e continui; inoltre approfondirò il problema dell’ottimizzazione vincolata, quindi i risultati ammissibili vivono in un intervallo definito e limitato, usando il concetto di dualità. Confronterò i risultati principali del metodo di Newton e del gradiente.
Funzioni
Convessità
Spazi di stato
Derivate
Algoritmi
File in questo prodotto:
File Dimensione Formato  
Beltrame_Leonardo.pdf

accesso aperto

Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/33707