ITER (“The Way” in latin) is an ambitious international project aiming to demonstrate the feasibility of fusion as large-scale and carbon-free energy source. ITER is designed to produce around 500 MW of fusion power with 50 MW of input power for heating the plasma. This input power is produced by means of three different Heating and Current Drive (H&CD) systems: Electron Cyclotron Resonance Heating (ECRH), Ion Cyclotron Resonance Heating (ICRH) and Neutral Beam Injector (NBI). In ITER, two NBI are foreseen, each capable of injecting neutral particles beam of 16.5 MW power inside the plasma for an hour, by extracting and accelerating a negative beam of hydrogen and deuterium ions up to 1 MeV of energy and neutralizing it before entering the plasma. These requirements have never been reached experimentally before. For this reason, a dedicated test facility, NBTF (Neutral Beam Test Facility), was developed to test and optimize the ITER NBI by means of two separate experiments: SPIDER (the ITER-scale radio frequency negative ion source) and MITICA (the full-scale prototype of the ITER heating neutral beam injector). In SPIDER, the plasma is generated inside four couples of inductively coupled plasma drivers, each powered by a radio frequency generator rated to provide 200 kW at 1 MHz. SPIDER beam source is fully installed in vacuum and thus the RF drivers and the related circuits, on the backside of the beam source, operates at the residual background pressure. Moreover, during SPIDER operation, the drivers and other components of the ion source are subjected to high intensity electric fields in vacuum which can lead to the generation of electric arcs. Consequently, the High Voltage Radio Frequency Test Facility (HVRFTF) was developed as a dedicated test facility to verify the voltage hold off on mock-ups of the radio frequency circuits and special components installed inside the SPIDER ion source. This facility is able to reproduce the operating conditions of the drivers: the high voltage is produced exploiting a resonant circuit with high quality factor, while the components under test components are installed within a vacuum vessel filled with the desired gasses and pressure. Different mock-ups geometries generate different electric fields and are supplied with an increasing RF voltage up to the formation of an electric arc, that is the limit not to exceed with SPIDER to avoid damages. The effects of this arc, however, can lead to damages to the amplifier supplying the resonant circuit. Moreover, the resonant circuit is subjected to insulation failures that can cause damages too. Both the arc on the device under test and the insulation failures are characterized by fast transients with relatively high voltage and current peaks. A Passive Protection Circuit (PPC) was developed to dissipate the energy stored in the resonant circuit and to limit possible overvoltage at the amplifier output. Nevertheless, before relying on the protection, it is necessary to verify its effectiveness with dedicated tests. The aim of this thesis is to design the procedures to test the passive protection circuit.
ITER ("La Via" in latino) è un ambizioso progetto internazionale che mira a dimostrare la fattibilità della fusione come fonte di energia su larga scala e senza emissioni di carbonio. ITER è progettato per produrre circa 500 MW di potenza dalla reazione di fusione con 50 MW di potenza in ingresso per il riscaldamento del plasma. La potenza di ingresso è fornita attraverso tre diversi sistemi di riscaldamento (H&CD): riscaldamento a risonanza elettronica ciclotronica (ECRH), riscaldamento a risonanza ionica ciclotronica (ICRH) e riscaldamento tramite l’iniezione di fasci di neutri (NBI). In ITER è prevista la presenza di due NBI, ciascuno in grado di iniettare nel plasma un fascio di particelle neutre con un potenza di 16,5 MW per un'ora. Tale fascio viene ottenuto estraendo e accelerando un fascio di ioni negativi di idrogeno e deuterio fino a 1 MeV e neutralizzandolo prima di entrare nel plasma. Tali requisiti non sono mai stati raggiunti sperimentalmente. Per questo motivo, è stata sviluppata una struttura di test dedicata, NBTF (Neutral Beam Test Facility), per testare e ottimizzare il NBI di ITER attraverso due diversi esperimenti: SPIDER (la sorgente di ioni negativi a radiofrequenza a grandezza naturale di ITER) e MITICA (il prototipo a grandezza naturale dell'iniettore di fasci neutri di ITER). InSPIDER, il plasma viene generato all'interno di quattro coppie di driver accoppiate induttivamente con il plasma, ciascuna alimentata da un generatore a radiofrequenza in grado di fornire 200 kW a 1 MHz. Inoltre la sorgente di SPIDER è installata in una camera da vuoto, così i driver RF e i relativi circuiti, montati sul retro della sorgente, si trovano ad operare alla pressione di fondo residua. Tali parti si trovano quindi sottoposte a campi elettrici in vuoto ad alta intensità che possono portare alla generazione di archi elettrici che vanno evitati altrimenti la sorgente si potrebbe danneggiare. Per questo è stata sviluppata l’High Voltage Radio Frequency Test Facility (HVRFTF) con lo scopo di essere un esperimento accessibile, dedicato a verificare la tenuta della tensione di mock-up dei circuiti a radiofrequenza e dei componenti principali installati all'interno di SPIDER. Tale facility è in grado di riprodurre le condizioni operative dei driver di SPIDER: l'alta tensione viene prodotta utilizzando un circuito risonante ad alto fattore di qualità, mentre i componenti in prova sono installati all'interno di un vessel sotto vuoto che può essere riempito con differenti gas e alla pressione voluta. Differenti geometrie di mock-up generano campi elettrici diversi e vengono alimentati con una tensione RF crescente fino alla formazione di un arco elettrico, che rappresenta il limite da non superare in SPIDER per evitare danni.. Gli effetti di tale arco, tuttavia, possono causare danni all'amplificatore che alimenta il circuito risonante. Inoltre, il circuito risonante può essere soggetto a guasti dell'isolamento che possono anch’essi causare danni. Questo perchè sia l'arco sui mock-up che i guasti relativi all’isolamento sono caratterizzati da transitori veloci con picchi di tensione e corrente particolarmente elevati. Per limitare i danni di tali transitori è stato progettato un circuito di protezione passivo (PPC) in grado di dissipare l'energia immagazzinata nel circuito risonante e limitare eventuali sovratensioni che si dovessereo presentare sullo stadio di uscita dell'amplificatore. Tuttavia, prima di affidarsi alla protezione, è necessario verificarne l'efficacia con test dedicati. Lo scopo di questa tesi è quello di progettare le procedure per testare il circuito di protezione passivo.
Design of the tests for the Passive Protection Circuit of the High Voltage Radio Frequency Test Facility
FAORO, MATTEO
2021/2022
Abstract
ITER (“The Way” in latin) is an ambitious international project aiming to demonstrate the feasibility of fusion as large-scale and carbon-free energy source. ITER is designed to produce around 500 MW of fusion power with 50 MW of input power for heating the plasma. This input power is produced by means of three different Heating and Current Drive (H&CD) systems: Electron Cyclotron Resonance Heating (ECRH), Ion Cyclotron Resonance Heating (ICRH) and Neutral Beam Injector (NBI). In ITER, two NBI are foreseen, each capable of injecting neutral particles beam of 16.5 MW power inside the plasma for an hour, by extracting and accelerating a negative beam of hydrogen and deuterium ions up to 1 MeV of energy and neutralizing it before entering the plasma. These requirements have never been reached experimentally before. For this reason, a dedicated test facility, NBTF (Neutral Beam Test Facility), was developed to test and optimize the ITER NBI by means of two separate experiments: SPIDER (the ITER-scale radio frequency negative ion source) and MITICA (the full-scale prototype of the ITER heating neutral beam injector). In SPIDER, the plasma is generated inside four couples of inductively coupled plasma drivers, each powered by a radio frequency generator rated to provide 200 kW at 1 MHz. SPIDER beam source is fully installed in vacuum and thus the RF drivers and the related circuits, on the backside of the beam source, operates at the residual background pressure. Moreover, during SPIDER operation, the drivers and other components of the ion source are subjected to high intensity electric fields in vacuum which can lead to the generation of electric arcs. Consequently, the High Voltage Radio Frequency Test Facility (HVRFTF) was developed as a dedicated test facility to verify the voltage hold off on mock-ups of the radio frequency circuits and special components installed inside the SPIDER ion source. This facility is able to reproduce the operating conditions of the drivers: the high voltage is produced exploiting a resonant circuit with high quality factor, while the components under test components are installed within a vacuum vessel filled with the desired gasses and pressure. Different mock-ups geometries generate different electric fields and are supplied with an increasing RF voltage up to the formation of an electric arc, that is the limit not to exceed with SPIDER to avoid damages. The effects of this arc, however, can lead to damages to the amplifier supplying the resonant circuit. Moreover, the resonant circuit is subjected to insulation failures that can cause damages too. Both the arc on the device under test and the insulation failures are characterized by fast transients with relatively high voltage and current peaks. A Passive Protection Circuit (PPC) was developed to dissipate the energy stored in the resonant circuit and to limit possible overvoltage at the amplifier output. Nevertheless, before relying on the protection, it is necessary to verify its effectiveness with dedicated tests. The aim of this thesis is to design the procedures to test the passive protection circuit.File | Dimensione | Formato | |
---|---|---|---|
Faoro_Matteo.pdf
accesso aperto
Dimensione
2.92 MB
Formato
Adobe PDF
|
2.92 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/34524