This thesis work has been developed during an internship experience at Micromed S.p.a, an Italian company producing electromedical devices for neurophysiological diagnosis. To date, the company is a leader in the field of software and hardware development of intuitive and powerful platforms capable of adapting to any workflow. Special emphasis is placed on electroencephalogram (EEG) review and analysis software that supports easy navigation of EEG traces from routine, long-term monitoring (LTM), intensive care unit (ICU) monitoring, ambulatory EEG, and research studies. The main features of this software include the ability to customize user roles to fit the workflow, the presence of data analysis and management tools and sophisticated archiving capabilities. The main objective of this thesis project is to develop a plugin that can allow users to access data files with Matlab, through the use of Micromed EEG acquisition and processing software. The main need was to create a plugin to export data recorded with Micromed devices in Matlab format. Further goal achieved during the development of the thesis work was to make EEG data, from Micromed files, visible and editable by using the EEGLAB interface, a Matlab toolbox for processing electrophysiological signals. Moreover, thanks to the experience in Micromed I was able to follow the project throughout its life, investigating the operating procedure that applies to all activities related to the analysis, design, development and qualification of new products or to the revision/modification of existing projects/products. The goal, therefore, was to interface with different departments with the aim of receiving the business needs, assess the feasibility of changes, implement the plugin, validate and test the work and, finally, release it on the market.
Questo lavoro di tesi è stato sviluppato durante un'esperienza di tirocinio presso Micromed S.p.a, azienda italiana produttrice di dispositivi elettromedicali per la diagnosi neurofisiologica. Ad oggi l'azienda è leader nel campo dello sviluppo software e hardware di piattaforme intuitive e potenti in grado di adattarsi a qualsiasi flusso di lavoro. Particolare enfasi è posta sul software di revisione e analisi dell'elettroencefalogramma (EEG) che supporta la facile navigazione delle tracce EEG da monitoraggio di routine, monitoraggio a lungo termine (LTM), monitoraggio dell'unità di terapia intensiva (ICU), EEG ambulatoriale e studi di ricerca. Le caratteristiche principali di questo software includono la possibilità di personalizzare i ruoli degli utenti per adattarli al flusso di lavoro, la presenza di strumenti di analisi e gestione dei dati e sofisticate capacità di archiviazione. L'obiettivo principale di questo progetto di tesi è stato quello di sviluppare un plugin che possa consentire agli utenti di accedere ai file di dati con Matlab, attraverso l'uso del software di acquisizione ed elaborazione EEG Micromed. L'esigenza principale era quella di creare un plugin per esportare i dati registrati con i dispositivi Micromed in formato Matlab. Ulteriore obiettivo raggiunto durante lo sviluppo del lavoro di tesi è stato quello di rendere i dati EEG, da file Micromed, visibili e modificabili utilizzando l'interfaccia EEGLAB, un toolbox Matlab per l'elaborazione di segnali elettrofisiologici. Inoltre, grazie all'esperienza in Micromed ho potuto seguire il progetto in tutta la sua vita, indagando la procedura operativa che si applica a tutte le attività legate all'analisi, progettazione, sviluppo e qualificazione di nuovi prodotti o alla revisione/modifica di progetti/prodotti esistenti. L'obiettivo, quindi, era quello di interfacciarsi con diversi reparti con lo scopo di capire le esigenze aziendali, valutare la fattibilità delle modifiche, implementare il plugin, validare e testare il lavoro e, infine, rilasciarlo sul mercato.
From Brain Quick to Matlab and EEGLAB: development of an EEG data conversion plugin for Micromed devices
AMBROSINO, MARIAGRAZIA
2021/2022
Abstract
This thesis work has been developed during an internship experience at Micromed S.p.a, an Italian company producing electromedical devices for neurophysiological diagnosis. To date, the company is a leader in the field of software and hardware development of intuitive and powerful platforms capable of adapting to any workflow. Special emphasis is placed on electroencephalogram (EEG) review and analysis software that supports easy navigation of EEG traces from routine, long-term monitoring (LTM), intensive care unit (ICU) monitoring, ambulatory EEG, and research studies. The main features of this software include the ability to customize user roles to fit the workflow, the presence of data analysis and management tools and sophisticated archiving capabilities. The main objective of this thesis project is to develop a plugin that can allow users to access data files with Matlab, through the use of Micromed EEG acquisition and processing software. The main need was to create a plugin to export data recorded with Micromed devices in Matlab format. Further goal achieved during the development of the thesis work was to make EEG data, from Micromed files, visible and editable by using the EEGLAB interface, a Matlab toolbox for processing electrophysiological signals. Moreover, thanks to the experience in Micromed I was able to follow the project throughout its life, investigating the operating procedure that applies to all activities related to the analysis, design, development and qualification of new products or to the revision/modification of existing projects/products. The goal, therefore, was to interface with different departments with the aim of receiving the business needs, assess the feasibility of changes, implement the plugin, validate and test the work and, finally, release it on the market.File | Dimensione | Formato | |
---|---|---|---|
Ambrosino_Mariagrazia.pdf
accesso aperto
Dimensione
8.06 MB
Formato
Adobe PDF
|
8.06 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/35241