Imagine of having an autonomous agent (drone, robot, car, ..) that wants to navigate inside an unknown environment. The first question that it needs to answer for accomplish such task is: where Am I? Where are the objects that are surrounding me? The SLAM algorithm can answer to both questions simultaneously, in an on-line manner. This thesis focus on the implementation of a monocular SLAM algorithm on the UAV framework, where the classical obtained sparsity map is densified by means of a Convolutional Neural Network, properly scaled through 2D lidar measurements.

Imagine of having an autonomous agent (drone, robot, car, ..) that wants to navigate inside an unknown environment. The first question that it needs to answer for accomplish such task is: where Am I? Where are the objects that are surrounding me? The SLAM algorithm can answer to both questions simultaneously, in an on-line manner. This thesis focus on the implementation of a monocular SLAM algorithm on the UAV framework, where the classical obtained sparsity map is densified by means of a Convolutional Neural Network, properly scaled through 2D lidar measurements.

Lidar-based scale recovery dense SLAM for UAV navigation

ANDREOLI, JACOPO
2021/2022

Abstract

Imagine of having an autonomous agent (drone, robot, car, ..) that wants to navigate inside an unknown environment. The first question that it needs to answer for accomplish such task is: where Am I? Where are the objects that are surrounding me? The SLAM algorithm can answer to both questions simultaneously, in an on-line manner. This thesis focus on the implementation of a monocular SLAM algorithm on the UAV framework, where the classical obtained sparsity map is densified by means of a Convolutional Neural Network, properly scaled through 2D lidar measurements.
2021
Lidar-based scale recovery dense SLAM for UAV navigation
Imagine of having an autonomous agent (drone, robot, car, ..) that wants to navigate inside an unknown environment. The first question that it needs to answer for accomplish such task is: where Am I? Where are the objects that are surrounding me? The SLAM algorithm can answer to both questions simultaneously, in an on-line manner. This thesis focus on the implementation of a monocular SLAM algorithm on the UAV framework, where the classical obtained sparsity map is densified by means of a Convolutional Neural Network, properly scaled through 2D lidar measurements.
monocular slam
lidar-based
dense map
File in questo prodotto:
File Dimensione Formato  
Andreoli_Jacopo.pdf

accesso aperto

Dimensione 10.44 MB
Formato Adobe PDF
10.44 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/36256