Aerogels were discovered by Steven Kistler in 1931, who defined them as “gels in which the liquid has been replaced by air, with very moderate shrinkage of the solid network”. They are therefore porous materials with a very low density (approx. 0.1 g/cm3). Due to their low weight, low thermal conductivity and high specific surface, they have great potential in many technological fields such as selective absorption of pollutants, catalysis, energy storage or thermal insulation to mention a few. Inorganic aerogels tend to be brittle which has led to the generation of polymer-based aerogels which are materials that can exhibit properties similar to polymeric foams. Incorporation of polymers into aerogels increases, however, the flammability of those materials, potentially restricting their use in applications requiring fire safety, such as thermal insulation materials in building construction. A significant effort has targeted to the enhancement of the flame retardancy of aerogels, including the use of intrinsically flame-retardant polymers, polymer crosslinking, addition of flame retardants, and post-treatment of the resulting aerogels. Another possibility consists in adding fillers that can simultaneously increase the mechanical and thermal resistance of these materials. Furthermore, in this historical period there is a focus on the environmental impact of industrial products, which is why there is also a strong development in the world of aerogels on the creation of bio-based products. Several studies have been conducted on the use of polysaccharides such as cellulose, starch, chitosan, alginate, carrageenan or pectin as precursors for aerogels in order to find viable alternatives to petroleum-based foams on the market, such as polystyrene or polyurethane foams. Thus, the objective of this project is the creation and characterisation of eco-friendly composite aerogels made of bio-based materials: Ammonium alginate, a polysaccharide from seaweed, serves as a biopolymer, tannic acid, extracted from certain trees, was used as an additive due to its flame retardant and crosslinker characteristics. Finally, montmorillonite clay was used to significantly increase fire resistance and modify the mechanical properties. This inorganic material, found in abundance in the earth, allows the residue to increase considerably if the material is thermally degraded. The solvent used was deionised water and a sol-gel process followed by freeze-drying was performed, which allowed aerogels to be obtained with a moderate environmental impact. The different compositions were characterised using: Compression test, thermal conductivity analyser, thermogravimetric analysis, cone calorimeter, moisture analyser, Fourier transform infrared spectroscopy. In this way, it was possible to evaluate the influence of the additives on the material properties, noting that the samples with the best thermo-mechanical performance are those containing all chemical species, in particular as they increase, the properties improve. Only bulk density and thermal conductivity improve as the number of components in the aerogels decreases, as they are both also a function of the amount of solid phase present in a micro- and mesoporous material.
Gli aerogel sono stati scoperti da Steven Kistler nel 1931, che li definì come "gel in cui il liquido è stato sostituito dall'aria, con un ritiro molto moderato della rete solida". Si tratta quindi di materiali porosi con una densità molto bassa (circa 0,1 g/cm3). Grazie al loro peso ridotto, alla bassa conducibilità termica e all'elevata superficie specifica, hanno un grande potenziale in molti campi tecnologici, come l'assorbimento selettivo di sostanze inquinanti, la catalisi, l'accumulo di energia o l'isolamento termico, per citarne alcuni. Gli aerogel inorganici tendono a essere fragili, il che ha portato alla creazione di aerogel a base di polimeri, materiali che possono presentare proprietà simili alle schiume polimeriche. L'incorporazione di polimeri negli aerogel aumenta, tuttavia, l'infiammabilità di questi materiali, limitandone potenzialmente l'uso in applicazioni che richiedono sicurezza antincendio, come i materiali per l'isolamento termico nell'edilizia. Uno sforzo significativo è stato rivolto al miglioramento della resistenza alla fiamma degli aerogel, compreso l'uso di polimeri intrinsecamente ritardanti di fiamma, la reticolazione dei polimeri, l'aggiunta di ritardanti di fiamma e il post-trattamento degli aerogel risultanti. Un'altra possibilità consiste nell'aggiunta di cariche che possono aumentare contemporaneamente la resistenza meccanica e termica di questi materiali. Inoltre, in questo periodo storico c'è un'attenzione all'impatto ambientale dei prodotti industriali, motivo per cui c'è anche un forte sviluppo nel mondo degli aerogel sulla creazione di prodotti biobased. Sono stati condotti diversi studi sull'uso di polisaccaridi come la cellulosa, l'amido, il chitosano, l'alginato, la carragenina o la pectina come precursori per gli aerogel, al fine di trovare valide alternative alle schiume a base di petrolio presenti sul mercato, come il polistirene o il poliuretano. L'obiettivo di questo progetto è quindi la creazione e la caratterizzazione di aerogel compositi ecologici realizzati con materiali biobased: L'alginato di ammonio, un polisaccaride ricavato dalle alghe marine, funge da biopolimero, mentre l'acido tannico, estratto da alcuni alberi, è stato utilizzato come additivo per le sue caratteristiche di ritardante di fiamma e reticolante. Infine, l'argilla montmorillonite è stata utilizzata per aumentare significativamente la resistenza al fuoco e modificare le proprietà meccaniche. Questo materiale inorganico, presente in abbondanza nella terra, permette di aumentare notevolmente il residuo se il materiale viene degradato termicamente. Il solvente utilizzato è stato l'acqua deionizzata ed è stato eseguito il processo sol-gel seguito da liofilizzazione, che ha permesso di ottenere aerogel con un impatto ambientale moderato. Le diverse composizioni sono state caratterizzate mediante: Test di compressione, analizzatore di conducibilità termica, analisi termogravimetrica, calorimetro a cono, analizzatore di umidità, spettroscopia infrarossa a trasformata di Fourier. In questo modo, è stato possibile valutare l'influenza degli additivi sulle proprietà del materiale, notando che i campioni con le migliori prestazioni termomeccaniche sono quelli che contengono tutte le specie chimiche, in particolare all'aumentare delle quali le proprietà migliorano. Solo la densità apparente e la conducibilità termica migliorano al diminuire del numero di componenti negli aerogel, poiché entrambe sono anche funzione della quantità di fase solida presente in un materiale micro e mesoporoso.
Development of composite aerogels based on ammonium alginate
LUTMAN, GIOVANNI
2021/2022
Abstract
Aerogels were discovered by Steven Kistler in 1931, who defined them as “gels in which the liquid has been replaced by air, with very moderate shrinkage of the solid network”. They are therefore porous materials with a very low density (approx. 0.1 g/cm3). Due to their low weight, low thermal conductivity and high specific surface, they have great potential in many technological fields such as selective absorption of pollutants, catalysis, energy storage or thermal insulation to mention a few. Inorganic aerogels tend to be brittle which has led to the generation of polymer-based aerogels which are materials that can exhibit properties similar to polymeric foams. Incorporation of polymers into aerogels increases, however, the flammability of those materials, potentially restricting their use in applications requiring fire safety, such as thermal insulation materials in building construction. A significant effort has targeted to the enhancement of the flame retardancy of aerogels, including the use of intrinsically flame-retardant polymers, polymer crosslinking, addition of flame retardants, and post-treatment of the resulting aerogels. Another possibility consists in adding fillers that can simultaneously increase the mechanical and thermal resistance of these materials. Furthermore, in this historical period there is a focus on the environmental impact of industrial products, which is why there is also a strong development in the world of aerogels on the creation of bio-based products. Several studies have been conducted on the use of polysaccharides such as cellulose, starch, chitosan, alginate, carrageenan or pectin as precursors for aerogels in order to find viable alternatives to petroleum-based foams on the market, such as polystyrene or polyurethane foams. Thus, the objective of this project is the creation and characterisation of eco-friendly composite aerogels made of bio-based materials: Ammonium alginate, a polysaccharide from seaweed, serves as a biopolymer, tannic acid, extracted from certain trees, was used as an additive due to its flame retardant and crosslinker characteristics. Finally, montmorillonite clay was used to significantly increase fire resistance and modify the mechanical properties. This inorganic material, found in abundance in the earth, allows the residue to increase considerably if the material is thermally degraded. The solvent used was deionised water and a sol-gel process followed by freeze-drying was performed, which allowed aerogels to be obtained with a moderate environmental impact. The different compositions were characterised using: Compression test, thermal conductivity analyser, thermogravimetric analysis, cone calorimeter, moisture analyser, Fourier transform infrared spectroscopy. In this way, it was possible to evaluate the influence of the additives on the material properties, noting that the samples with the best thermo-mechanical performance are those containing all chemical species, in particular as they increase, the properties improve. Only bulk density and thermal conductivity improve as the number of components in the aerogels decreases, as they are both also a function of the amount of solid phase present in a micro- and mesoporous material.File | Dimensione | Formato | |
---|---|---|---|
Lutman_Giovanni.pdf
accesso aperto
Dimensione
6.41 MB
Formato
Adobe PDF
|
6.41 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/36368