Unmanned Aerial Vehicles are a rising topic in the control theory research, due to their emerging theoretical and practical challenges. This translates into the fact that recent studies focused on the structural properties of these aerial platforms actuated by more than four rotors, arbitrarily oriented, to allow them to perform better than a standard quadrotor, even in harsh conditions and in case of possible failures. Typically, to face these problems, the forces and moments generated these platforms turn out to be decoupled and can be treated independently. In this thesis, the goal is to study the actuation and robustness properties of these multirotor platforms varying their physical construction parameters. The attention is first focused on the decoupling between the translational and rotational dynamics, that are intrinsically coupled in the original model, and then on the maximization of the force actuation capability that generates no angular momentum. Lastly all these studies are combined to plan a trajectory subject to all the given constraints, and that is not affected by propellers’ failure.

Il controllo di veicoli aerei autonomi è un argomento di crescente interesse, dovuto all’affascinante teoria che ha come protagonisti questi dispositivi e che può condurre a impegnative ed entusiasmanti sfide sia in campo teorico che pratico. Questo si riflette nel fatto che studi recenti sono mirati a studiare le proprietà strutturali di questi multi rotori, permettendo performance migliori rispetto ai droni standard con quattro eliche, anche in situazioni anomale e nel caso di possibili guasti. Per affrontare il problema, i momenti e le forze sono stati trattati in modo indipendente le une dagli atri, rendendo possibile lo studio di come un numero maggiore di eliche possa portare a maggior robustezza e manovrabilità del drone stesso. Questi punti vengono trattati in primo luogo disaccoppiando le dinamiche di traslazione e rotazione, che nel modello dinamico sono intrinsecamente accoppiate, successivamente viene massimizzata la capacità di attuazione delle forze che non generano momento angolare. Tutto questo viene usato per generare una traiettoria che tenga in considerazione tutti i vincoli dati e che sia immune dai guasti alle eliche.

Force-Moment decoupled actuation property analysis for a Generically Tilted Multirotor platform

PERIN, MARCO
2021/2022

Abstract

Unmanned Aerial Vehicles are a rising topic in the control theory research, due to their emerging theoretical and practical challenges. This translates into the fact that recent studies focused on the structural properties of these aerial platforms actuated by more than four rotors, arbitrarily oriented, to allow them to perform better than a standard quadrotor, even in harsh conditions and in case of possible failures. Typically, to face these problems, the forces and moments generated these platforms turn out to be decoupled and can be treated independently. In this thesis, the goal is to study the actuation and robustness properties of these multirotor platforms varying their physical construction parameters. The attention is first focused on the decoupling between the translational and rotational dynamics, that are intrinsically coupled in the original model, and then on the maximization of the force actuation capability that generates no angular momentum. Lastly all these studies are combined to plan a trajectory subject to all the given constraints, and that is not affected by propellers’ failure.
2021
Force-Moment decoupled actuation property analysis for a Generically Tilted Multirotor platform
Il controllo di veicoli aerei autonomi è un argomento di crescente interesse, dovuto all’affascinante teoria che ha come protagonisti questi dispositivi e che può condurre a impegnative ed entusiasmanti sfide sia in campo teorico che pratico. Questo si riflette nel fatto che studi recenti sono mirati a studiare le proprietà strutturali di questi multi rotori, permettendo performance migliori rispetto ai droni standard con quattro eliche, anche in situazioni anomale e nel caso di possibili guasti. Per affrontare il problema, i momenti e le forze sono stati trattati in modo indipendente le une dagli atri, rendendo possibile lo studio di come un numero maggiore di eliche possa portare a maggior robustezza e manovrabilità del drone stesso. Questi punti vengono trattati in primo luogo disaccoppiando le dinamiche di traslazione e rotazione, che nel modello dinamico sono intrinsecamente accoppiate, successivamente viene massimizzata la capacità di attuazione delle forze che non generano momento angolare. Tutto questo viene usato per generare una traiettoria che tenga in considerazione tutti i vincoli dati e che sia immune dai guasti alle eliche.
UAV
Failsafe control
Trajectory planning
File in questo prodotto:
File Dimensione Formato  
Perin_Marco.pdf

accesso aperto

Dimensione 16.83 MB
Formato Adobe PDF
16.83 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/36792