In industrial settings, safety plays a crucial role to prevent incidents between man and machines. This thesis, has been developed, in collaboration with a company, with the purpose of implementing an aid safety system to decrease the danger of workers in contact with dangerous machines. The system has to be able to detect persons based on computer vision techniques applied on a camera feed. The state of the art approaches for human detection in computer vision are often based on machine learning and deep learning. However, this algorithms require a huge computational effort that demands considerable inference times, depending on the hardware, to produce the results. Furthermore, the device in which the safety system needs to be implemented is a wireless control device, hence an embedded system that has limited hardware capabilities. For this reasons, this thesis will firstly explore state of the art approaches for person detection and their impact on an embedded device. The work will then cover the original development of a deep neural network able to solve this problem.
I sistemi di sicurezza in ambienti industriali hanno un ruolo importante e necessario per prevenire incidenti tra macchinari e lavoratori. Questo elaborato è stato sviluppato in collaborazione con un’azienda, con lo scopo di studiare un sistema di sicurezza che mira a prevenire i rischi del lavoratore a contatto con pericolosi macchinari. Il sistema in studio, richiede di essere capace di identificare le persone grazie a tecniche di visione artificiale applicate su feed di telecamere. Nello stato dell’arte, gli algoritmi relativi alla funzione di rilevamento persone si basano principalmente su machine learning e deep learning. Queste tecniche, tuttavia, richiedono una grande potenza di calcolo che, in base all’hardware impiegato, implica considerevoli tempi di inferenza per elaborare il risultato. Inoltre, il dispositivo sul quale è richiesto implementare il sistema di sicurezza è un radio comando con risorse limitate, ovvero un sistema embedded. L’elaborato si pone quindi da una parte l’obiettivo di esplorare i sistemi per identificare persone allo stato dell’arte e di valutare il loro impatto su un dispositivo embedded, dall’altra si concentra sullo sviluppo originale di una rete neurale capace di risolvere il problema sopracitato.
COMPUTER VISION BASED PERSON DETECTION ON EMBEDDED SYSTEMS
PASTI, FRANCESCO
2021/2022
Abstract
In industrial settings, safety plays a crucial role to prevent incidents between man and machines. This thesis, has been developed, in collaboration with a company, with the purpose of implementing an aid safety system to decrease the danger of workers in contact with dangerous machines. The system has to be able to detect persons based on computer vision techniques applied on a camera feed. The state of the art approaches for human detection in computer vision are often based on machine learning and deep learning. However, this algorithms require a huge computational effort that demands considerable inference times, depending on the hardware, to produce the results. Furthermore, the device in which the safety system needs to be implemented is a wireless control device, hence an embedded system that has limited hardware capabilities. For this reasons, this thesis will firstly explore state of the art approaches for person detection and their impact on an embedded device. The work will then cover the original development of a deep neural network able to solve this problem.File | Dimensione | Formato | |
---|---|---|---|
Pasti_Francesco.pdf
Open Access dal 29/11/2023
Dimensione
5.98 MB
Formato
Adobe PDF
|
5.98 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/39202