This Master Thesis provides an analysis to find a numerically efficient method to model a satellite flexible bodies in the MATLAB - Simulink environment. The numerical analysis is conducted by comparing two mathematical representations of flexible bodies: the Lumped-parameter method and the Flexible-beam method, which are implemented by the Simulation Tool to model and simulate the dynamics of a solar panel and a 3-DOF robotic arm. This study is on purpose to contribute to a project conducted at the University of Padua in collaboration with the European Space Agency (ESA): it focuses on the development of the Guidance Navigation Control technologies (GNC) suitable to be applied to both In-Orbit Servicing (IOS) and Active Debris Removal (ADR) missions conducted by a chaser spacecraft equipped with a robotic arm that can grab space debris and lock onto other satellites; in particular, the research activity under contract is a simulator of the dynamics of Close Proximity Operations (CPOs) scenarios, called Functional Engineering Simulator (FES). The solar panel and robotic arm mounted on the spacecraft behave as flexible bodies and need to be studied because their deformations may occasionally become severe enough to affect the performance of their respective systems. If these effects occur, vibrations are significantly amplified, accelerating the rate of mechanical wear, increasing power consumption, and interfering with high-precision tasks. The goals of this Master Thesis are: (1) to create a reliable simulation tool to study the dynamic response of the solar panel subject to external perturbations and the effects of the flexible elements of the robotic arm during its motion, (2) to compare the two flexible body methods in terms of accuracy of results and execution time, (3) to find the mathematical model that can adequately represent the flexible body theory so that it can be used to model a real-time simulator. The solar panel is modeled according to two different scenarios, which represent two examples of space mission architectures requiring robotic operations in the near future. Its behavior is studied by analyzing the response to impulses caused by external perturbations acting on the solar panel surface. On the other hand, the robotic arm is modeled to follow a rectilinear path from a starting point to an end point and the behavior of its flexible elements is studied at each time-step of this motion. The flexible-beam method consists of using an existing Simscape Multibody block to model the spacecraft element. Hence, it has been considered as a benchmark in order to verify the reliability of the lumped-parameter method, for which the results demonstrated that it is a valid tool for describing the behavior of flexible bodies of a spacecraft, mainly due to its fast execution times, which make it suitable for modeling in a real-time simulator.
Questa Tesi Magistrale fornisce un’analisi per trovare un metodo numericamente efficiente per modellare i corpi flessibili di un satellite. L’analisi numerica è condotta su MATLAB - Simulink confrontando due rappresentazioni matematiche dei corpi flessibili: il metodo a “parametri forfettari” e il metodo della “trave flessibile”, utilizzati per modellare un pannello solare e un braccio robotico a 3 GdL. Questo studio ha lo scopo di contribuire ad un progetto condotto presso l’Università di Padova in collaborazione con l’Agenzia Spaziale Europea (ESA): esso si concentra sullo sviluppo di tecnologie di Guidance Navigation Control (GNC) per missioni di In-Orbit Servicing (IOS) e Active Debris Removal (ADR), condotte da un veicolo spaziale, dotato di un braccio robotico in grado di afferrare detriti spaziali e agganciare altri satelliti; in particolare, l’attività di ricerca oggetto del contratto è un simulatore della dinamica di scenari per Close Proximity Operations (CPOs), denominato Functional Engineering Simulator (FES). Il pannello solare e il braccio robotico, montati sul satellite, devono essere studiati perché le loro deformazioni possono occasionalmente diventare abbastanza severe da influenzare sia le proprie prestazioni che quelle degli altri sistemi. Se ciò dovesse accadere, le vibrazioni verrebbero notevolmente amplificate, accelerando il tasso di usura meccanica, aumentando il consumo di energia e interferendo con i compiti che necessitano un’alta precisione. Gli obiettivi di questa tesi Magistrale sono: (1) creare un Simulatore adatto per studiare la risposta dinamica del pannello solare soggetto a perturbazioni esterne e gli effetti degli elementi flessibili del braccio robotico durante il suo movimento, (2) confrontare i due metodi dei corpi flessibili in termini di accuratezza dei risultati e tempi di simulazione, (3) trovare il modello matematico che possa rappresentare adeguatamente la teoria dei corpi flessibili, in modo da poter essere utilizzato per modellare un vero simulatore. Il pannello solare è stato modellato secondo due diversi scenari, i quali rappresentano due esempi di architetture di missioni spaziali che prevederanno operazioni con bracci robotici nel prossimo futuro. Il suo comportamento è stato studiato analizzando la risposta degli impulsi causati dalle perturbazioni esterne che agiscono sulla superficie del pannello solare. Invece, il braccio robotico è stato modellato per seguire un percorso rettilineo da un punto iniziale a un punto finale e il comportamento dei suoi elementi flessibili è stato studiato ad ogni istante del suo movimento. Per modellare un elemento del veicolo spaziale, il metodo della trave flessibile utilizza un blocco già esistente di Simscape Multibody. Per questo motivo, esso è stato considerato come metodo di riferimento per verificare l’affidabilità di quello a parametri forfettari, per il quale i risultati hanno dimostrato essere uno metodo valido per descrivere il comportamento dei corpi flessibili di un veicolo spaziale, soprattutto grazie ai suoi rapidi tempi di simulazione, i quali lo rendono adatto per modellare in un vero simulatore.
Analysis and modeling of satellite flexible bodies in Simscape Multibody
GRANDIS, GIANMARCO
2022/2023
Abstract
This Master Thesis provides an analysis to find a numerically efficient method to model a satellite flexible bodies in the MATLAB - Simulink environment. The numerical analysis is conducted by comparing two mathematical representations of flexible bodies: the Lumped-parameter method and the Flexible-beam method, which are implemented by the Simulation Tool to model and simulate the dynamics of a solar panel and a 3-DOF robotic arm. This study is on purpose to contribute to a project conducted at the University of Padua in collaboration with the European Space Agency (ESA): it focuses on the development of the Guidance Navigation Control technologies (GNC) suitable to be applied to both In-Orbit Servicing (IOS) and Active Debris Removal (ADR) missions conducted by a chaser spacecraft equipped with a robotic arm that can grab space debris and lock onto other satellites; in particular, the research activity under contract is a simulator of the dynamics of Close Proximity Operations (CPOs) scenarios, called Functional Engineering Simulator (FES). The solar panel and robotic arm mounted on the spacecraft behave as flexible bodies and need to be studied because their deformations may occasionally become severe enough to affect the performance of their respective systems. If these effects occur, vibrations are significantly amplified, accelerating the rate of mechanical wear, increasing power consumption, and interfering with high-precision tasks. The goals of this Master Thesis are: (1) to create a reliable simulation tool to study the dynamic response of the solar panel subject to external perturbations and the effects of the flexible elements of the robotic arm during its motion, (2) to compare the two flexible body methods in terms of accuracy of results and execution time, (3) to find the mathematical model that can adequately represent the flexible body theory so that it can be used to model a real-time simulator. The solar panel is modeled according to two different scenarios, which represent two examples of space mission architectures requiring robotic operations in the near future. Its behavior is studied by analyzing the response to impulses caused by external perturbations acting on the solar panel surface. On the other hand, the robotic arm is modeled to follow a rectilinear path from a starting point to an end point and the behavior of its flexible elements is studied at each time-step of this motion. The flexible-beam method consists of using an existing Simscape Multibody block to model the spacecraft element. Hence, it has been considered as a benchmark in order to verify the reliability of the lumped-parameter method, for which the results demonstrated that it is a valid tool for describing the behavior of flexible bodies of a spacecraft, mainly due to its fast execution times, which make it suitable for modeling in a real-time simulator.File | Dimensione | Formato | |
---|---|---|---|
Grandis_Gianmarco.pdf
accesso aperto
Dimensione
5.39 MB
Formato
Adobe PDF
|
5.39 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/45684