Oligonucleotides have emerged as powerful diagnostic and therapeutic tools, as demonstrated by the increasing number of approved nucleic acid drugs in recent years. Key examples with considerable potential for curing and preventing a wide range of conditions, such as neurodegenerative and infectious diseases, include antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), aptamers, and mRNA vaccines. However, their therapeutic efficacy is often hindered by shortcomings such as chemical and enzymatic instability, poor cellular uptake, and inefficient targeted delivery to organs and tissues. Therefore, a variety of chemical modification strategies at the backbone, sugar, or nucleobase moieties, along with conjugate formation have been explored to tackle these issues. As part of a larger research endeavour aimed at investigating the impact of structural modifications at the heterocyclic nucleobase core as well as glycosidic bond on the binding affinity and specificity of the correspondingly modified oligonucleotides for various biomedical and biotechnological applications, this thesis project seeks to identify suitably modified nucleoside candidates that could serve the above purposes. The project commenced with the evaluation of diverse heterocyclic synthons and ultimate selection of two 4-aza-7,9-dideazapurines as aglycone partners. These nucleobases were then connected to a ribose sugar moiety via a C-C bond, aiming to enhance resistance to enzymatic and hydrolytic cleavage. In addition, the altered geometry of C-C bond, as opposed to the C-N-glycosidic bond found in natural nucleosides, can result in modified hydrogen bonding patterns, influencing the stability and interaction properties with target enzymes and/or nucleic acid sequences. Since C-nucleoside analogues showed promise as potential antivirals, such as the FDA-approved broad-spectrum antiviral drug remdesivir, the synthesised analogues will also be evaluated for their antiviral properties against diverse RNA viruses. Eventually, the obtained C-nucleosides will be exploited as building blocks for synthesising partially and fully modified oligonucleotide sequences previous conversion to the respective phosphoramidites. The ability of C-modified oligonucleotides to hybridise with natural RNA will provide useful new knowledge for future applications in the fields of antisense and RNA interference technology.
Gli oligonucleotidi sono emersi come validi strumenti diagnostici e terapeutici, come dimostra il numero crescente di farmaci a base di acidi nucleici approvati negli ultimi anni. Esempi chiave con un notevole potenziale per la cura e la prevenzione di un'ampia gamma di patologie, come malattie neurodegenerative e infettive, includono gli oligonucleotidi antisenso (ASOs), i piccoli RNA interferenti (siRNAs), gli aptameri e i vaccini a base di mRNA. Tuttavia, la loro efficacia terapeutica è spesso ostacolata da limiti quali l'instabilità chimica ed enzimatica, lo scarso assorbimento cellulare e l'inefficiente consegna mirata a organi e tessuti. Per affrontare queste criticità sono state pertanto studiate diverse strategie di modifica chimica che coinvolgono la struttura portante, gli zuccheri o le basi azotate, oltre alla formazione di coniugati. Come parte di un più ampio sforzo di ricerca volto a indagare l'impatto delle modifiche strutturali del nucleo eterociclico così come del legame glicosidico sull'affinità di legame e sulla specificità dei corrispondenti oligonucleotidi modificati per varie applicazioni biomediche e biotecnologiche, questo progetto di tesi cerca di identificare candidati nucleosidici opportunamente modificati che possano servire agli scopi sopra menzionati. Il progetto è stato avviato con la valutazione di diversi sintoni eterociclici e la selezione finale di due 4-aza-7,9-dideazapurine come partner agliconici. Queste nucleobasi sono state poi associate a una frazione di zucchero ribosio tramite un legame C-C, con l'obiettivo di aumentare la resistenza alla scissione enzimatica e idrolitica. Inoltre, la geometria alterata del legame C-C, rispetto al legame C-N-glicosidico presente nei nucleosidi naturali, può determinare modelli di legame idrogeno modificati, influenzando la stabilità e le proprietà di interazione con gli enzimi e/o le sequenze di acidi nucleici target. Poiché gli analoghi dei C-nucleosidi hanno dimostrato promettenti proprietà antivirali, come il remdesivir, farmaco antivirale ad ampio spettro approvato dall'FDA, gli analoghi sintetizzati saranno valutati anche per le loro proprietà antivirali contro diversi virus a RNA. Infine, i C-nucleosidi ottenuti saranno sfruttati come elementi costitutivi per sintetizzare sequenze oligonucleotidiche parzialmente e completamente modificate, previa conversione nei rispettivi fosforamiditi. La capacità degli oligonucleotidi C-modificati di ibridarsi con l'RNA naturale fornirà nuove conoscenze utili per future applicazioni nei campi della tecnologia antisenso e dell'interferenza dell'RNA.
Synthesis and evaluation of purine C-nucleoside analogues as versatile tools for therapeutic applications
FALOCI, FEDERICO
2022/2023
Abstract
Oligonucleotides have emerged as powerful diagnostic and therapeutic tools, as demonstrated by the increasing number of approved nucleic acid drugs in recent years. Key examples with considerable potential for curing and preventing a wide range of conditions, such as neurodegenerative and infectious diseases, include antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), aptamers, and mRNA vaccines. However, their therapeutic efficacy is often hindered by shortcomings such as chemical and enzymatic instability, poor cellular uptake, and inefficient targeted delivery to organs and tissues. Therefore, a variety of chemical modification strategies at the backbone, sugar, or nucleobase moieties, along with conjugate formation have been explored to tackle these issues. As part of a larger research endeavour aimed at investigating the impact of structural modifications at the heterocyclic nucleobase core as well as glycosidic bond on the binding affinity and specificity of the correspondingly modified oligonucleotides for various biomedical and biotechnological applications, this thesis project seeks to identify suitably modified nucleoside candidates that could serve the above purposes. The project commenced with the evaluation of diverse heterocyclic synthons and ultimate selection of two 4-aza-7,9-dideazapurines as aglycone partners. These nucleobases were then connected to a ribose sugar moiety via a C-C bond, aiming to enhance resistance to enzymatic and hydrolytic cleavage. In addition, the altered geometry of C-C bond, as opposed to the C-N-glycosidic bond found in natural nucleosides, can result in modified hydrogen bonding patterns, influencing the stability and interaction properties with target enzymes and/or nucleic acid sequences. Since C-nucleoside analogues showed promise as potential antivirals, such as the FDA-approved broad-spectrum antiviral drug remdesivir, the synthesised analogues will also be evaluated for their antiviral properties against diverse RNA viruses. Eventually, the obtained C-nucleosides will be exploited as building blocks for synthesising partially and fully modified oligonucleotide sequences previous conversion to the respective phosphoramidites. The ability of C-modified oligonucleotides to hybridise with natural RNA will provide useful new knowledge for future applications in the fields of antisense and RNA interference technology.File | Dimensione | Formato | |
---|---|---|---|
Faloci_Federico.pdf
accesso riservato
Dimensione
9.84 MB
Formato
Adobe PDF
|
9.84 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/47611