The thesis deals with the mathematical problem of recognizing the shape of a drum (so that the sound can be traced back to its shape) through the resolution of the problem of the eigenvalues Δϕ=λϕ in a domain Ω, and given the existence of an orthonormal basis, be able to generalize the result in order to have as first term of the asymptotic expansion of the eigenfunctions in terms of the dimension of the volume of the domain. This question was introduced by Kac and the modern formulation derives from Weyl's Law, which will be demonstrated and extensively discussed in the thesis.
La tesi tratta il problema matematico del riconoscere la forma di un tamburo (in modo che il suono sia riconducibile alla sua forma) attraverso la risoluzione del problema degli autovalori Δϕ=λϕ in un dominio Ω, e data l'esistenza di una base ortonormale, poter generalizzare il risultato in modo da avere il primo termine dell'espansione asintotica delle autofunzioni in termini della dimensione del volume del dominio. Tale questione è stata introdotta da Kac e la formulazione moderna deriva dalla Legge di Weyl, che verrà dimostrata ed ampiamente discussa nella tesi.
Il Teorema di Weyl e sua applicazione al tamburo vibrante
MOLETTA, VALENTINA
2022/2023
Abstract
The thesis deals with the mathematical problem of recognizing the shape of a drum (so that the sound can be traced back to its shape) through the resolution of the problem of the eigenvalues Δϕ=λϕ in a domain Ω, and given the existence of an orthonormal basis, be able to generalize the result in order to have as first term of the asymptotic expansion of the eigenfunctions in terms of the dimension of the volume of the domain. This question was introduced by Kac and the modern formulation derives from Weyl's Law, which will be demonstrated and extensively discussed in the thesis.File | Dimensione | Formato | |
---|---|---|---|
Moletta Valentina Tesi (1).pdf
accesso riservato
Dimensione
945.84 kB
Formato
Adobe PDF
|
945.84 kB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/50169