The prediction of the noise emitted and the attempt to reduce it has become one of the fundamental elements for evaluating the performance of a machine. In particular, aeroacoustics has become a prominent discipline in aeronautics, where the reduction of jet engine noise is essential. In recent years many methodologies have been developed for the prediction of the acoustic field due to turbulent flows with the aim of obtaining an accurate prediction while keeping the computational costs low. The aim of this work is to simulate the jet of a conical nozzle of diameter 2in operating at a Mach number equal to 0.4 in order to predict the acoustic emission in the far-field. The solution strategy adopted is an hybrid method which combines a URANS 2D fluid dynamics simulation with the acoustic solver based on the Ffowcs Williams-Hawkings equation. The simulation employed three different configurations of boundary conditions with the aim of evaluating the influence of the boundary layer at the nozzle outlet. The models have a good ability to reproduce the fluid dynamic field but a poor ability to predict the acoustic field. The results show an important variability of the acoustic field by modifying the velocity profile at the nozzle outlet in contrast with the experimental results.
L'aeroacustica è diventata una disciplina di spicco nell'ambito aeronautico, in cui la riduzione del rumore del motore a reazione, specialmente di quello del getto, è fondamentale. Negli ultimi anni si sono sviluppate molteplici metodologie per la previsione del campo acustico dovuto a flussi turbolenti con l'obiettivo di ottenere una previsione accurata mantenendo i costi computazionali bassi. Questo lavoro ha l'obiettivo di simulare il getto di un ugello conico di diametro 2in operante a un numero di Mach pari a 0.4 per prevedere l'emissione acustica nel far-field. La strategia risolutiva adottata è quella di un metodo ibrido che vede accoppiare una simulazione fluidodinamica URANS 2D con il solutore acustico basato sull'equazione di Ffowcs Williams-Hawkings. La simulazione ha impiegato tre configurazioni differenti di condizioni al contorno, con lo scopo di valutare l'influenza dello strato limite in uscita dall'ugello. I risultati mostrano, da parte del modello, una buona capacità di riprodurre il campo fluidodinamico ma una scarsa capacità previsionale del campo acustico, mostrando un'importante variabilità di tale nei confronti del profilo di velocità all'uscita in controtendenza con i risultati sperimentali.
Simulazione aeroacustica di getti di ugelli tramite metodo FWH
STURARO, LORENZO
2022/2023
Abstract
The prediction of the noise emitted and the attempt to reduce it has become one of the fundamental elements for evaluating the performance of a machine. In particular, aeroacoustics has become a prominent discipline in aeronautics, where the reduction of jet engine noise is essential. In recent years many methodologies have been developed for the prediction of the acoustic field due to turbulent flows with the aim of obtaining an accurate prediction while keeping the computational costs low. The aim of this work is to simulate the jet of a conical nozzle of diameter 2in operating at a Mach number equal to 0.4 in order to predict the acoustic emission in the far-field. The solution strategy adopted is an hybrid method which combines a URANS 2D fluid dynamics simulation with the acoustic solver based on the Ffowcs Williams-Hawkings equation. The simulation employed three different configurations of boundary conditions with the aim of evaluating the influence of the boundary layer at the nozzle outlet. The models have a good ability to reproduce the fluid dynamic field but a poor ability to predict the acoustic field. The results show an important variability of the acoustic field by modifying the velocity profile at the nozzle outlet in contrast with the experimental results.File | Dimensione | Formato | |
---|---|---|---|
Sturaro_Lorenzo.pdf
accesso aperto
Dimensione
8.7 MB
Formato
Adobe PDF
|
8.7 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/50739