One of the main differences between quantum computers and classical computers is the use of reversible circuits and logic. These circuits reduce energy dissipation and enable the implementation of quantum algorithms, which have lower computational complexity compared to their classical counterparts. This thesis aims to examine in detail the functioning of qubits and quantum logic gates. It will analyze the physical properties of qubits, such as entanglement and superposition of states, and how these can be exploited in quantum circuits. Additionally, a new logic gate will be explored, along with how it could reduce the cost of certain algorithms. The first part of the thesis will focus on describing the theoretical foundations of quantum computing. It will cover qubits, their physical properties, implementation, and representation. The operation of quantum logic gates will be explained, comparing them to their classical counterparts and how they manipulate qubits and leverage their physical properties. A series of fundamental quantum logic gates, crucial for most algorithms, will be illustrated in terms of representation and parameter description. In the second part, a new logic gate will be introduced, showcasing its operation and properties. It will be demonstrated how this gate could be used to reduce the complexity of qubit addition circuits. Circuits created using this logic gate will be presented, and their parameters will be studied.
Una delle differenze principali dei computer quantistici rispetto ai computer classici è l'utilizzo di circuiti e logica reversibile. Questi circuiti riducono la dissipazione di energia e permettono l'implementazione di algoritmi quantistici, algoritmi che presentano una complessità computazionale inferiore rispetto alla controparte classica. Questa tesi si propone di esaminare in dettaglio il funzionamento dei qubit e delle porte logiche quantistiche. Verranno analizzate le proprietà fisiche dei qubits, come l'entanglement e la sovrapposizione di stati, e come queste possano essere sfruttate nei circuiti quantistici. Verrà inoltre analizzata una nuova porta logica e come questa potrebbe ridurre il costo di alcuni algoritmi. La prima parte della tesi sarà dedicata alla descrizione delle basi teoriche della computazione quantistica. Verranno descritti i qubits, le loro proprietà fisiche, la loro implementazione e rappresentazione. Verrà descritto il funzionamento delle porte logiche quantiche, confrontandole con la controparte classica, come queste permettono di manipolare i qubits e sfruttarne le proprietà fisiche. Seguiranno una serie di porte logiche quantiche, fondamentali per la maggior parte di algoritmi, illustrandone la rappresentazione e descrivendone i parametri. Nella seconda parte verrà presentato una nuova porta logica, mostrando funzionamento e proprietà.Verrà mostrato come questa porta potrebbe essere utilizzata per ridurre la complessità dei circuiti di addizione di qubit. Verranno presentati i circuiti creati utilizzati questa porta logica e ne verranno studiati i parametri.
Analisi della complessità dei circuiti quantistici
CASADO MORENO, ALBERTO
2022/2023
Abstract
One of the main differences between quantum computers and classical computers is the use of reversible circuits and logic. These circuits reduce energy dissipation and enable the implementation of quantum algorithms, which have lower computational complexity compared to their classical counterparts. This thesis aims to examine in detail the functioning of qubits and quantum logic gates. It will analyze the physical properties of qubits, such as entanglement and superposition of states, and how these can be exploited in quantum circuits. Additionally, a new logic gate will be explored, along with how it could reduce the cost of certain algorithms. The first part of the thesis will focus on describing the theoretical foundations of quantum computing. It will cover qubits, their physical properties, implementation, and representation. The operation of quantum logic gates will be explained, comparing them to their classical counterparts and how they manipulate qubits and leverage their physical properties. A series of fundamental quantum logic gates, crucial for most algorithms, will be illustrated in terms of representation and parameter description. In the second part, a new logic gate will be introduced, showcasing its operation and properties. It will be demonstrated how this gate could be used to reduce the complexity of qubit addition circuits. Circuits created using this logic gate will be presented, and their parameters will be studied.File | Dimensione | Formato | |
---|---|---|---|
Tesi.pdf
accesso aperto
Dimensione
5.95 MB
Formato
Adobe PDF
|
5.95 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/52294