The Human Fascia is a multilayered connective tissue. The aim of this study is to obtain its mechanical properties by analyzing samples of human deep abdominal fascia by Digital Image Correlation. The image sequences are pre-processed in MATLAB and then analyzed by means of GOM Correlate 2019 software. In this way, sample strains are defined and tissue mechanical properties are obtained. Moreover, it is also possible to observe the sample mechanical behavior at failure and the correlation between the stress applied with the experimental tensile test and the strain obtained with software.
La Fascia è un tessuto connettivale multistrato. L’obiettivo di questo studio è derivare quali ne siano le proprietà meccaniche, analizzando provini di fascia profonda addominale umana tramite la Digital Image Correlation. Le sequenze di immagini così ottenute vengono pre-elaborate in MATLAB e successivamente analizzate attraverso il software GOM Correlate 2019. In questo modo, si analizzano le deformazioni dei provini, deducendo le proprietà generali del tessuto. Inoltre, è possibile comprendere il comportamento meccanico del tessuto a rottura e la correlazione tra le tensioni imposte con la prova sperimentale e le deformazioni ricavate tramite il software.
Applicazione della Digital Image Correlation su prove meccaniche di campioni biologici: analisi delle deformazioni durante prove di trazione uniassiale su fascia profonda addominale
CHAHOUD, FRANCESCO
2022/2023
Abstract
The Human Fascia is a multilayered connective tissue. The aim of this study is to obtain its mechanical properties by analyzing samples of human deep abdominal fascia by Digital Image Correlation. The image sequences are pre-processed in MATLAB and then analyzed by means of GOM Correlate 2019 software. In this way, sample strains are defined and tissue mechanical properties are obtained. Moreover, it is also possible to observe the sample mechanical behavior at failure and the correlation between the stress applied with the experimental tensile test and the strain obtained with software.File | Dimensione | Formato | |
---|---|---|---|
Chahoud_Francesco.pdf
embargo fino al 24/09/2026
Dimensione
3.25 MB
Formato
Adobe PDF
|
3.25 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/52366