The discovery of the Pythagorean formula for win prediction in baseball marked a significant turning point in the field of sports analysis, providing analysts and coaches with a valuable tool for over three decades. Over time, the Pythagorean model has undergone various evolutions and adaptations to extend its application to other professional team sports. However, until 2015, no one had yet applied this model to tennis. It was then that Ann Kovalchick embarked on an ambitious study, extending the Pythagorean formula to tennis by analyzing data from the top 100 male players between 2004 and 2014. However, to improve and update Kovalchick's findings, a subsequent study was proposed that considered more recent data covering the period from 2010 to 2020, while also taking into account the different types of playing surfaces. This revision led to significant differences in player performance on different surfaces but confirmed the underlying idea proposed by the original author. Subsequently, an algorithm for match prediction was developed, based on the break point model and the analysis of players' performance over the last nine months. Despite its simplicity, this algorithm has proven to be highly effective in predicting match outcomes, surpassing other prediction models used in the field. The similarity between the Pythagorean model, applied to baseball, and the break point model in tennis further reinforced the importance of this prediction tool, demonstrating that even in an individual sport like tennis, it is possible to employ an analytical approach to evaluate players' performances and forecast match results.
La scoperta della formula pitagorica per la previsione delle vittorie nel baseball ha rappresentato un importante punto di svolta nel campo dell'analisi sportiva, offrendo agli analisti e agli allenatori uno strumento di grande valore per oltre trent'anni. Nel corso del tempo, il modello pitagorico è stato oggetto di varie evoluzioni e adattamenti al fine di estenderlo ad altri sport di squadra professionistici. Tuttavia, fino al 2015, nessuno aveva ancora applicato tale modello al tennis. È stato allora che Ann Kovalchick ha intrapreso uno studio ambizioso, estendendo la formula pitagorica anche al tennis, analizzando i dati relativi ai primi 100 giocatori maschili nel periodo compreso tra il 2004 e il 2014. Tuttavia, per migliorare e aggiornare le conclusioni di Kovalchick, è stato proposto uno studio successivo che ha considerato dati più recenti, coprendo il periodo dal 2010 al 2020 e tenendo conto anche delle diverse tipologie di superfici di gioco. Questa revisione ha portato a delle differenze significative tra le prestazioni dei giocatori su superfici differenti, ma ha confermato l'idea di base proposta dall'autrice originale. Successivamente, è stato sviluppato un algoritmo di previsione degli incontri che si basa sul modello dei punti break e sull'analisi delle prestazioni degli ultimi nove mesi dei giocatori. Nonostante la sua semplicità, questo algoritmo si è rivelato estremamente efficace nel prevedere gli esiti degli incontri, superando altri modelli di previsione utilizzati nel campo. La similitudine tra il modello pitagorico, applicato al baseball, e il modello dei punti break nel tennis ha rafforzato ulteriormente l'importanza di questo strumento di previsione, dimostrando che anche in uno sport individuale come il tennis è possibile utilizzare un approccio analitico per valutare le performance dei giocatori e prevedere i risultati degli incontri.
Esiste un teorema Pitagorico per le vittorie nel tennis?
PITTALIS, ALESSANDRO
2022/2023
Abstract
The discovery of the Pythagorean formula for win prediction in baseball marked a significant turning point in the field of sports analysis, providing analysts and coaches with a valuable tool for over three decades. Over time, the Pythagorean model has undergone various evolutions and adaptations to extend its application to other professional team sports. However, until 2015, no one had yet applied this model to tennis. It was then that Ann Kovalchick embarked on an ambitious study, extending the Pythagorean formula to tennis by analyzing data from the top 100 male players between 2004 and 2014. However, to improve and update Kovalchick's findings, a subsequent study was proposed that considered more recent data covering the period from 2010 to 2020, while also taking into account the different types of playing surfaces. This revision led to significant differences in player performance on different surfaces but confirmed the underlying idea proposed by the original author. Subsequently, an algorithm for match prediction was developed, based on the break point model and the analysis of players' performance over the last nine months. Despite its simplicity, this algorithm has proven to be highly effective in predicting match outcomes, surpassing other prediction models used in the field. The similarity between the Pythagorean model, applied to baseball, and the break point model in tennis further reinforced the importance of this prediction tool, demonstrating that even in an individual sport like tennis, it is possible to employ an analytical approach to evaluate players' performances and forecast match results.File | Dimensione | Formato | |
---|---|---|---|
Pittalis_Alessandro.pdf
accesso aperto
Dimensione
325.4 kB
Formato
Adobe PDF
|
325.4 kB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/52456