This study investigates the use of computer vision couples with artificial intelligence to detect mold in tomatoes during the drying process. Mold presence in tomatoes poses threats to human health and the food industry as it leads to several issues beyond appearance. It is primarily caused by fungi that spread rapidly over the tomato surface, compromising their quality, and potentially producing toxins that can harm human health. The experimental aim of this work focused on the issue of wastage and loss within the food industry. When tomatoes succumb to mold, they become unsuitable for consumption, resulting in a loss of food and resources. Considering that tomato production requires resources such as land, water, energy, and time, wasting tomatoes due to mold also represents a waste of these valuable resources. The goal was to evaluate the mold detection capabilities of an object detection algorithm, particularly in its early stages, to facilitate preventative measures. This experimental analysis entailed training the algorithm with an extensive array of images, encompassing a variety of healthy and spoiled tomatoes of different shapes, types, textures and drying stages. The chosen object detection algorithm, YOLOv7, is convolutional neural network-based and was utilized for image labeling and training epochs. Evaluation metrics, including precision and recall, were utilized to assess the algorithm's performance. The implementation of artificial intelligence in the future has significant potential for enhancing food production processes by streamlining mold identification. Prompt mold detection would expedite segregation of contaminated products, thus reducing the risk of toxin dissemination and preserving the quality of uncontaminated food. This approach could minimize food waste and resource inefficiencies linked to discarding significant product amounts. Furthermore, integrating computer vision in the HACCP (Hazard Analysis Critical Control Points) context could enhance food safety protocols via accurate and prompt detection. By prioritizing prevention, this technology offers a promising chance to optimize quality, efficiency, and sustainability of future food production processes.

Il presente elaborato si propone di analizzare l'uso dell'intelligenza artificiale attraverso il riconoscimento di immagini per rilevare la presenza di muffa nei pomodori durante il processo di essiccazione. La muffa nei pomodori rappresenta un rischio sia per la salute umana sia per l'industria alimentare, comportando, anche, una serie di problemi che vanno oltre l'aspetto estetico. Essa è causata principalmente da funghi che si diffondono rapidamente sulla superficie dei pomodori. Tale processo compromette così la qualità con la conseguente produzione di tossine che possono influire sulla salute umana. L'obiettivo sperimentale di questo lavoro è il problema dello spreco e della perdita di prodotto nell'industria alimentare. Quando i pomodori sono colpiti da muffe, infatti, diventano inadatti al consumo, con conseguente perdita di cibo. Lo spreco di pomodori a causa delle muffe rappresenta anche la perdita di preziose risorse, utili alla produzione, come terra, acqua, energia e tempo. Il proposito è testare, anche nella fase iniziale, la capacità di un algoritmo di rilevamento degli oggetti per identificare la muffa, e adottare misure preventive. L'analisi sperimentale ha previsto l'addestramento dell'algoritmo con un'ampia serie di foto, tra cui pomodori sani e rovinati di diversi tipi, forme e consistenze. Per etichettare le immagini e creare le epoche di addestramento è stato quindi utilizzato YOLOv7, l'algoritmo di rilevamento degli oggetti scelto, basato su reti neurali. Per valutare le prestazioni sono state utilizzate metriche di valutazione, tra cui “Precision” e “Recall”. L'ipotesi di applicazione dell'intelligenza artificiale in futuro sarà un grande potenziale per migliorare i processi di produzione alimentare, facilitando, così, l'identificazione delle muffe. Il rilevamento rapido delle muffe faciliterebbe la separazione tempestiva dei prodotti contaminati, riducendo così il rischio di diffusione delle tossine e preservando la qualità degli alimenti non contaminati. Questo approccio contribuirebbe a ridurre al minimo gli sprechi alimentari e le inefficienze delle risorse associate allo scarto di grandi quantità di prodotto. Inoltre, l'integrazione della computer vision nel contesto dell'HACCP (Hazard Analysis Critical Control Points) potrebbe migliorare i protocolli di sicurezza alimentare grazie a un rilevamento accurato e tempestivo. Questa tecnologia potrà offrire, dando priorità alla prevenzione, una promettente opportunità per migliorare la qualità, l'efficienza e la sostenibilità dei futuri processi di produzione alimentare.

Artificial Intelligence for detection and prevention of mold contamination in tomato processing

AMATO, FEDERICA
2022/2023

Abstract

This study investigates the use of computer vision couples with artificial intelligence to detect mold in tomatoes during the drying process. Mold presence in tomatoes poses threats to human health and the food industry as it leads to several issues beyond appearance. It is primarily caused by fungi that spread rapidly over the tomato surface, compromising their quality, and potentially producing toxins that can harm human health. The experimental aim of this work focused on the issue of wastage and loss within the food industry. When tomatoes succumb to mold, they become unsuitable for consumption, resulting in a loss of food and resources. Considering that tomato production requires resources such as land, water, energy, and time, wasting tomatoes due to mold also represents a waste of these valuable resources. The goal was to evaluate the mold detection capabilities of an object detection algorithm, particularly in its early stages, to facilitate preventative measures. This experimental analysis entailed training the algorithm with an extensive array of images, encompassing a variety of healthy and spoiled tomatoes of different shapes, types, textures and drying stages. The chosen object detection algorithm, YOLOv7, is convolutional neural network-based and was utilized for image labeling and training epochs. Evaluation metrics, including precision and recall, were utilized to assess the algorithm's performance. The implementation of artificial intelligence in the future has significant potential for enhancing food production processes by streamlining mold identification. Prompt mold detection would expedite segregation of contaminated products, thus reducing the risk of toxin dissemination and preserving the quality of uncontaminated food. This approach could minimize food waste and resource inefficiencies linked to discarding significant product amounts. Furthermore, integrating computer vision in the HACCP (Hazard Analysis Critical Control Points) context could enhance food safety protocols via accurate and prompt detection. By prioritizing prevention, this technology offers a promising chance to optimize quality, efficiency, and sustainability of future food production processes.
2022
Artificial Intelligence for detection and prevention of mold contamination in tomato processing
Il presente elaborato si propone di analizzare l'uso dell'intelligenza artificiale attraverso il riconoscimento di immagini per rilevare la presenza di muffa nei pomodori durante il processo di essiccazione. La muffa nei pomodori rappresenta un rischio sia per la salute umana sia per l'industria alimentare, comportando, anche, una serie di problemi che vanno oltre l'aspetto estetico. Essa è causata principalmente da funghi che si diffondono rapidamente sulla superficie dei pomodori. Tale processo compromette così la qualità con la conseguente produzione di tossine che possono influire sulla salute umana. L'obiettivo sperimentale di questo lavoro è il problema dello spreco e della perdita di prodotto nell'industria alimentare. Quando i pomodori sono colpiti da muffe, infatti, diventano inadatti al consumo, con conseguente perdita di cibo. Lo spreco di pomodori a causa delle muffe rappresenta anche la perdita di preziose risorse, utili alla produzione, come terra, acqua, energia e tempo. Il proposito è testare, anche nella fase iniziale, la capacità di un algoritmo di rilevamento degli oggetti per identificare la muffa, e adottare misure preventive. L'analisi sperimentale ha previsto l'addestramento dell'algoritmo con un'ampia serie di foto, tra cui pomodori sani e rovinati di diversi tipi, forme e consistenze. Per etichettare le immagini e creare le epoche di addestramento è stato quindi utilizzato YOLOv7, l'algoritmo di rilevamento degli oggetti scelto, basato su reti neurali. Per valutare le prestazioni sono state utilizzate metriche di valutazione, tra cui “Precision” e “Recall”. L'ipotesi di applicazione dell'intelligenza artificiale in futuro sarà un grande potenziale per migliorare i processi di produzione alimentare, facilitando, così, l'identificazione delle muffe. Il rilevamento rapido delle muffe faciliterebbe la separazione tempestiva dei prodotti contaminati, riducendo così il rischio di diffusione delle tossine e preservando la qualità degli alimenti non contaminati. Questo approccio contribuirebbe a ridurre al minimo gli sprechi alimentari e le inefficienze delle risorse associate allo scarto di grandi quantità di prodotto. Inoltre, l'integrazione della computer vision nel contesto dell'HACCP (Hazard Analysis Critical Control Points) potrebbe migliorare i protocolli di sicurezza alimentare grazie a un rilevamento accurato e tempestivo. Questa tecnologia potrà offrire, dando priorità alla prevenzione, una promettente opportunità per migliorare la qualità, l'efficienza e la sostenibilità dei futuri processi di produzione alimentare.
HACCP
Imaging
Computer Vision
Food waste
Sustainability
File in questo prodotto:
File Dimensione Formato  
AMATO_FEDERICA.pdf

accesso aperto

Dimensione 4.49 MB
Formato Adobe PDF
4.49 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/55530