The aim of this master's thesis titled "Studying and analysis of cooling towers using the Kloppers-Popper model in the MATLAB environment" is to investigate the thermal pollution of the Danube River and propose a cooling tower solution for the Nikola Tesla Powerplant in Serbia. The study focuses on understanding the principles of cooling towers, including their functioning and the description of mass and heat transfer phenomena involved. To achieve this, a one-dimensional model developed by Poppe and Kloppers is utilized. The research begins with a comprehensive overview of cooling towers, their importance in industrial processes, and their environmental impact, particularly in relation to thermal pollution of water bodies. The Kloppers-Popper model, known for its accuracy and versatility, is then analyzed in detail, providing insights into the underlying mathematical equations and assumptions. Subsequently, a MATLAB-based model is developed to simulate the behavior of cooling towers and validate the Kloppers-Popper model. The MATLAB model incorporates weather data and aims to serve as a pre-design tool for cooling tower systems.
Il presente lavoro di tesi dal titolo "Studio e analisi delle torri di raffreddamento utilizzando il modello Kloppers-Popper nell'ambiente MATLAB" si propone di esaminare l'inquinamento termico del fiume Danubio e proporre una soluzione a base di torre di raffreddamento per la centrale elettrica Nikola Tesla in Serbia. Lo studio si concentra sulla comprensione dei principi delle torri di raffreddamento, inclusi il loro funzionamento e la descrizione dei fenomeni di trasferimento di massa e calore coinvolti. A tale scopo, si utilizza un modello unidimensionale sviluppato da Poppe e Kloppers. La ricerca inizia con una panoramica completa sulle torri di raffreddamento, la loro importanza nei processi industriali e il loro impatto ambientale, in particolare per quanto riguarda l'inquinamento termico dei corpi idrici. Successivamente, viene analizzato in dettaglio il modello Kloppers-Popper, noto per la sua precisione e versatilità, fornendo approfondimenti sulle equazioni matematiche sottostanti e sulle ipotesi di base. Successivamente, viene sviluppato un modello basato su MATLAB per simulare il comportamento delle torri di raffreddamento e convalidare il modello Kloppers-Popper. Il modello MATLAB incorpora dati meteorologici e si propone di fungere da strumento di pre-progettazione per i sistemi di torri di raffreddamento.
Studio e analisi delle torri evaporative utilizzando il modello Kloppers-Popper in ambiente MATLAB
FABRIZIO, SIMONE
2022/2023
Abstract
The aim of this master's thesis titled "Studying and analysis of cooling towers using the Kloppers-Popper model in the MATLAB environment" is to investigate the thermal pollution of the Danube River and propose a cooling tower solution for the Nikola Tesla Powerplant in Serbia. The study focuses on understanding the principles of cooling towers, including their functioning and the description of mass and heat transfer phenomena involved. To achieve this, a one-dimensional model developed by Poppe and Kloppers is utilized. The research begins with a comprehensive overview of cooling towers, their importance in industrial processes, and their environmental impact, particularly in relation to thermal pollution of water bodies. The Kloppers-Popper model, known for its accuracy and versatility, is then analyzed in detail, providing insights into the underlying mathematical equations and assumptions. Subsequently, a MATLAB-based model is developed to simulate the behavior of cooling towers and validate the Kloppers-Popper model. The MATLAB model incorporates weather data and aims to serve as a pre-design tool for cooling tower systems.File | Dimensione | Formato | |
---|---|---|---|
Fabrizio_Simone.pdf
accesso aperto
Dimensione
14.55 MB
Formato
Adobe PDF
|
14.55 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/55942