Mitochondrial diseases are clinical disorders characterized by biochemical defects in the functioning of electron transfer chain (ETC) complexes. The causes of these alterations are mutations in a large group of nuclear or mitochondrial DNA genes that encode proteins necessary for the formation of ETC complexes. The common effect with respect to WT cells, is a change in the cytosolic NAD+/NADH ratio, the imbalance of which results in heterogeneous manifestations. No real cure for mitochondrial diseases is yet available. In this thesis, we address the biosynthesis of Glycerol-3-phosphate (Gro3P) as a conserved pathway in yeast, C.elegans, mouse liver cells, and human cancer cells to regenerate cytosolic NAD+ following inhibition/malfunctioning of respiratory complexes. Pharmacological and genetic inhibition of ETC complexes I and III has enabled the study in various organisms of metabolic defects that cause cytosolic NADH to accumulate and become toxic. To understand the changes in metabolism following inhibition of the genes involved and to follow the fate of glucose in the presence of ETC dysfunction, an in vivo glucose-tagging strategy using an isotope [U-13C] was used. The goal in the analyzed study is to understand whether it is possible to promote the expression of enzymes involved in Gro3P biosynthesis as a possible therapeutic strategy to treat mitochondrial diseases.
Le malattie mitocondriali sono disturbi clinici caratterizzati da difetti biochimici nel funzionamento dei complessi della catena respiratoria degli elettroni (electron transfer chain, ETC). Le cause di queste alterazioni sono mutazioni a carico di un ampio gruppo di geni del DNA nucleare o mitocondriale che codificano proteine necessarie per la formazione dei complessi del ETC. L’effetto comune rispetto alle cellule WT, è una modificazione del rapporto NAD+/NADH citosolico, il cui sbilanciamento comporta manifestazioni eterogenee. Non è ancora disponibile una vera e propria cura per le malattie mitocondriali. In questo elaborato si affronta la biosintesi del Glicerolo-3-fosfato (Gro3P) come pathway conservato in lievito, C.elegans, cellule di fegato di topo e cellule tumorali umane, per rigenerare il NAD+ citosolico in seguito all’inibizione/malfunzionamento dei complessi respiratori. L’inibizione farmacologica e genetica dei complessi I e III dell’ETC, ha permesso di studiare nei vari organismi i difetti metabolici che causano un accumulo di NADH citosolico, che diventa tossico. Per comprendere i cambiamenti nel metabolismo in seguito a inibizione dei geni coinvolti e seguire il destino del glucosio in presenza di disfunzioni dell’ ETC, è stata utilizzata una strategia di marcatura del glucosio in vivo attraverso un isotopo [U-13C]. L’obbiettivo che si pone nello studio analizzato è di comprendere se sia possibile promuovere l’espressione degli enzimi coinvolti nella biosintesi del Gro3P, come possibile strategia terapeutica per trattare le malattie mitocondriali.
Il ruolo del Glicerolo-3-fosfato nella rigenerazione del NAD+ citosolico come possibile approccio terapeutico contro le malattie mitocondriali
LOVATO, ARIANNA
2022/2023
Abstract
Mitochondrial diseases are clinical disorders characterized by biochemical defects in the functioning of electron transfer chain (ETC) complexes. The causes of these alterations are mutations in a large group of nuclear or mitochondrial DNA genes that encode proteins necessary for the formation of ETC complexes. The common effect with respect to WT cells, is a change in the cytosolic NAD+/NADH ratio, the imbalance of which results in heterogeneous manifestations. No real cure for mitochondrial diseases is yet available. In this thesis, we address the biosynthesis of Glycerol-3-phosphate (Gro3P) as a conserved pathway in yeast, C.elegans, mouse liver cells, and human cancer cells to regenerate cytosolic NAD+ following inhibition/malfunctioning of respiratory complexes. Pharmacological and genetic inhibition of ETC complexes I and III has enabled the study in various organisms of metabolic defects that cause cytosolic NADH to accumulate and become toxic. To understand the changes in metabolism following inhibition of the genes involved and to follow the fate of glucose in the presence of ETC dysfunction, an in vivo glucose-tagging strategy using an isotope [U-13C] was used. The goal in the analyzed study is to understand whether it is possible to promote the expression of enzymes involved in Gro3P biosynthesis as a possible therapeutic strategy to treat mitochondrial diseases.File | Dimensione | Formato | |
---|---|---|---|
TESI - Lovato Arianna .pdf
accesso riservato
Dimensione
9.91 MB
Formato
Adobe PDF
|
9.91 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/60277