Numerous efforts have recently been made to find a solution to the massive emission of carbon dioxide into the atmosphere, which is the main responsible for the climate change. This thesis work aims at improving the carbon dioxide methanation process, one of the possible strategies that could limit or stop the net emission of this powerful greenhouse gas in the near future. In particular, the use of zeolites in the catalytic bed as water sorbent has been investigated. The addition of zeolites can allow the in-situ removal of water from the reaction equilibrium, shifting it towards the products formation, in accordance with the Le Châtelier’s principle. This strategy, called sorption-enhanced methanation, allows an improvement in the conversion, beyond the conventional thermodynamic limits. With this aim, two different approaches have been explored: i) dispersing the metal catalyst on two zeolites, 13X and 4A, that also act as a support; or ii) using a physical mixture of the zeolite and the catalyst in the catalytic bed. Series of nickel or cobalt catalysts supported on different supports, such as γ-alumina, titania, or zirconia, have been prepared by using the incipient wetness impregnation or wet impregnation synthesis methods. The effect of the metal loading and the addition of ceria as promoter have also been studied. A wide arsenal of characterization techniques has been used to investigate the materials: nitrogen adsorption and desorption isotherm, X-ray fluorescence, ICP-OES, X-ray diffractometry, temperature-programmed reduction, static chemisorption of hydrogen, thermogravimetric analysis, and scanning electron microscopy. The characterization evidences that the use of nickel rather than cobalt, the choice of low calcination temperatures and the deposition on a highly porous support allow to obtain a greater dispersion, exposing a larger metallic area. The dispersion can further increase if the catalyst is promoted with cerium. Another important result is the increase of the interaction force of the metal with the support for the 10 wt.% metal loading catalysts on Alumina, causing a greater aluminate formation and decreasing the reducibility. Finally, the coating of metal particles with few atomic layers of reduced titania is observed after the reduction of the calcined catalyst, segregating the active phase. To conclude, these catalysts have been tested in the methanation of carbon dioxide reaction by using the approaches described above. From these results, the main factors responsible for the achievement of good conversion and selectivity have been identify. These factors are a high surface area, a good reducibility and the occurrence of redox properties, introduced by the support or promoter. In addition, the catalytic tests have pointed out the superiority of the physical mixture, increasing the conversion of about 20% for an appropriate combination of reaction parameters.
Numerosi sforzi sono stati compiuti recentemente per trovare una soluzione alla massiccia emissione di anidride carbonica nell’atmosfera, la quale è il principale responsabile del cambiamento climatico. Questo lavoro di tesi mira a migliorare il processo di metanazione dell’anidride carbonica, una delle possibili strategie che potrebbero limitare o fermare l’emissione netta di questo potente gas serra nel prossimo futuro. In particolare è stato studiato l'uso delle zeoliti nel letto catalitico come sorbente dell'acqua. L’aggiunta di zeoliti può consentire la rimozione in situ dell’acqua dall’equilibrio di reazione, spostandola verso la formazione dei prodotti, secondo il principio di Le Châtelier. Questa strategia, chiamata sorption-enhganced methanation, consente un miglioramento della conversione, oltre i limiti termodinamici convenzionali. A questo scopo sono stati esplorati due diversi approcci: i) disperdere il catalizzatore metallico su due zeoliti, 13X e 4A, che fungono anche da supporto; oppure ii) utilizzare una miscela fisica della zeolite e del catalizzatore nel letto catalitico. Serie di catalizzatori di nichel o cobalto supportati su diversi supporti, come γ-allumina, titania o zirconia, sono stati preparati utilizzando i metodi di sintesi dell'impregnazione incipiente a bagnato o dell'impregnazione a bagnato. È stato studiato anche l'effetto del contenuto di metallo e dell'aggiunta di ceria come promotore. Un ampio arsenale di tecniche di caratterizzazione è stato utilizzato per studiare i materiali: adsorbimento e desorbimento isotermo di azoto, fluorescenza a raggi X, ICP-OES, diffrattometria a raggi X, temperature-programmed reduction, chemisorbimento statico di idrogeno, analisi termogravimetrica e microscopia elettronica a scansione. La caratterizzazione evidenzia che l'utilizzo di nichel piuttosto che di cobalto, la scelta di basse temperature di calcinazione e la deposizione su un supporto altamente poroso consentono di ottenere una maggiore dispersione, esponendo un'area metallica più ampia. La dispersione può aumentare ulteriormente se il catalizzatore viene promosso con cerio. Un altro risultato importante è l'aumento della forza di interazione del metallo con il supporto per i catalizzatori contenenti 10 % in peso di metallo su Allumina, causando una maggiore formazione di alluminato e diminuendo la riducibilità. Infine, si osserva il rivestimento di particelle metalliche con pochi strati atomici di titania ridotta dopo la riduzione del catalizzatore calcinato, segregando la fase attiva. Per concludere, questi catalizzatori sono stati testati nella reazione di metanazione dell'anidride carbonica utilizzando gli approcci sopra descritti. Da questi risultati sono stati identificati i principali fattori responsabili dell’ottenimento di una buona conversione e selettività. Questi fattori sono un'elevata area superficiale, una buona riducibilità e la presenza di proprietà redox, introdotte dal supporto o promotore. Inoltre le prove catalitiche hanno evidenziato la superiorità della miscela fisica, aumentando la conversione di circa il 20% per un'opportuna combinazione dei parametri di reazione.
Metanazione dell'anidride carbonica: ottimizzazione dei catalizzatori tramite la modifica di diversi parametri e possibile applicazione delle zeoliti
PARON, ENRICO
2022/2023
Abstract
Numerous efforts have recently been made to find a solution to the massive emission of carbon dioxide into the atmosphere, which is the main responsible for the climate change. This thesis work aims at improving the carbon dioxide methanation process, one of the possible strategies that could limit or stop the net emission of this powerful greenhouse gas in the near future. In particular, the use of zeolites in the catalytic bed as water sorbent has been investigated. The addition of zeolites can allow the in-situ removal of water from the reaction equilibrium, shifting it towards the products formation, in accordance with the Le Châtelier’s principle. This strategy, called sorption-enhanced methanation, allows an improvement in the conversion, beyond the conventional thermodynamic limits. With this aim, two different approaches have been explored: i) dispersing the metal catalyst on two zeolites, 13X and 4A, that also act as a support; or ii) using a physical mixture of the zeolite and the catalyst in the catalytic bed. Series of nickel or cobalt catalysts supported on different supports, such as γ-alumina, titania, or zirconia, have been prepared by using the incipient wetness impregnation or wet impregnation synthesis methods. The effect of the metal loading and the addition of ceria as promoter have also been studied. A wide arsenal of characterization techniques has been used to investigate the materials: nitrogen adsorption and desorption isotherm, X-ray fluorescence, ICP-OES, X-ray diffractometry, temperature-programmed reduction, static chemisorption of hydrogen, thermogravimetric analysis, and scanning electron microscopy. The characterization evidences that the use of nickel rather than cobalt, the choice of low calcination temperatures and the deposition on a highly porous support allow to obtain a greater dispersion, exposing a larger metallic area. The dispersion can further increase if the catalyst is promoted with cerium. Another important result is the increase of the interaction force of the metal with the support for the 10 wt.% metal loading catalysts on Alumina, causing a greater aluminate formation and decreasing the reducibility. Finally, the coating of metal particles with few atomic layers of reduced titania is observed after the reduction of the calcined catalyst, segregating the active phase. To conclude, these catalysts have been tested in the methanation of carbon dioxide reaction by using the approaches described above. From these results, the main factors responsible for the achievement of good conversion and selectivity have been identify. These factors are a high surface area, a good reducibility and the occurrence of redox properties, introduced by the support or promoter. In addition, the catalytic tests have pointed out the superiority of the physical mixture, increasing the conversion of about 20% for an appropriate combination of reaction parameters.File | Dimensione | Formato | |
---|---|---|---|
Paron_Enrico.pdf
accesso aperto
Dimensione
7.54 MB
Formato
Adobe PDF
|
7.54 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/60899