In recent years, artificial intelligence has made significant progress in the medical field, with potential and growing prospects for application in the veterinary field as well. This paper explores the application of artificial neural networks in veterinary computed tomography, focusing on the recognition of hepatic masses in dogs. Starting from a database of tomographic images of dogs with lesions in the thoraco-abdominal area, hepatic masses were delineated using segmentation software. Through the mechanism of deep learning, the considered tomographic images allowed the training of convolutional neural networks (CNNs). After this initial training phase, the neural networks were subjected to various tomographic images showing undelineated hepatic masses. At this point in the study, however, a significant challenge emerged: the current network was not able to effectively identify the hepatic masses due to their excessive heterogeneity in terms of size. The Dice score, which measures the similarity between the network's segmentation and the ideal one, was only 0.3, indicating difficulty in accurately recognizing the masses. As a first step to address this issue, the introduction of a dimensional cut-off, i.e., a size threshold beyond which lesions are not considered by the network, is being evaluated. The current results offer important insights for optimizing the recognition of hepatic masses through convolutional neural networks, but highlight the need for further adjustments and experimentation.
Negli ultimi anni, l'intelligenza artificiale ha segnato notevoli progressi nel campo medico, con potenzialità e crescenti prospettive di impiego anche nel campo veterinario. Questo elaborato esplora l'applicazione delle reti neurali artificiali nella tomografia computerizzata veterinaria, focalizzandosi sul riconoscimento di masse epatiche nei cani. A partire da un database di immagini tomografiche di cani con lesioni nell’area toracico-addominale, sono state delimitate masse epatiche mediante l’impiego di un software di segmentazione. Attraverso il meccanismo del deep learning, le immagini tomografiche considerate hanno permesso di addestrare le reti neurali convoluzionali (CNN). Dopo questa prima fase di addestramento, alle reti neurali sono state sottoposte varie immagini tomografiche presentanti masse epatiche non delimitate. A questo punto dello studio è tuttavia emersa una sfida significativa: il network attuale non è stato in grado di identificare efficacemente le masse epatiche a causa della loro eccessiva eterogeneità in termini di dimensione. Il Dice-score, che misura la somiglianza tra la segmentazione del network e quella ideale, è risultato essere solamente di 0.3, indicando difficoltà nell’accurato riconoscimento delle masse. Come primo passo per affrontare questa problematica, si sta valutando l'introduzione di un cut-off dimensionale, ossia una soglia di dimensione oltre la quale le lesioni non vengono considerate dal network. I risultati attuali offrono intuizioni importanti per ottimizzare il riconoscimento delle masse epatiche tramite reti neurali convoluzionali, ma evidenziano la necessità di ulteriori aggiustamenti e sperimentazioni.
Sviluppo di reti neurali artificiali per l’identificazione di masse epatiche in tomografia computerizzata nel cane
FAGGIONATO, SILVIA
2023/2024
Abstract
In recent years, artificial intelligence has made significant progress in the medical field, with potential and growing prospects for application in the veterinary field as well. This paper explores the application of artificial neural networks in veterinary computed tomography, focusing on the recognition of hepatic masses in dogs. Starting from a database of tomographic images of dogs with lesions in the thoraco-abdominal area, hepatic masses were delineated using segmentation software. Through the mechanism of deep learning, the considered tomographic images allowed the training of convolutional neural networks (CNNs). After this initial training phase, the neural networks were subjected to various tomographic images showing undelineated hepatic masses. At this point in the study, however, a significant challenge emerged: the current network was not able to effectively identify the hepatic masses due to their excessive heterogeneity in terms of size. The Dice score, which measures the similarity between the network's segmentation and the ideal one, was only 0.3, indicating difficulty in accurately recognizing the masses. As a first step to address this issue, the introduction of a dimensional cut-off, i.e., a size threshold beyond which lesions are not considered by the network, is being evaluated. The current results offer important insights for optimizing the recognition of hepatic masses through convolutional neural networks, but highlight the need for further adjustments and experimentation.File | Dimensione | Formato | |
---|---|---|---|
FAGGIONATO_SILVIA.pdf
accesso riservato
Dimensione
2.82 MB
Formato
Adobe PDF
|
2.82 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/61886