89Zr is a radioisotope with a half-life of approximately 78.4 hours, making it particularly suitable for applications in nuclear medicine. Its stability and binding properties make it an interesting candidate for labeling biomolecules, allowing the observation of specific biological processes. In nuclear medicine, 89Zr is used to label targeting agents such as monoclonal antibodies and small peptides. Its primary bifunctional chelator is deferoxamine, DFO: a siderophore compound that has found its place in nuclear medicine due to its strong metal-binding capacity. However, it has been observed that the [89Zr]ZrOx-DFO complex is not particularly stable over time, showing a tendency for early release of 89Zr, leading to its accumulation in bones. To overcome this issue in the recent years, several studies have focused on developing alternative chelating systems. Among these, DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) a macrocyclic chelator, began to gain interest. Macrocyclic chelators, unlike acyclic ones, require higher temperatures to coordinate with the radioisotope. DOTA can bind to 89Zr, allowing stable and specific labeling of biomolecules with diagnostic and therapeutic purpose. A key point of interest is the use of 89Zr in developing specific target compounds for the Positron Emission Tomography (PET). Specifically, exploring the possibility of using arginine-glycine-aspartate (RGD) peptide derivatives, known for their affinity with αvβ3 or αvβ5 integrin receptors, which are overexpressed on tumor and neovascular cells. Integrins are a family of cell surface proteins involved in numerous biological processes, including cell adhesion, migration, and cell communication. The diagnostic interest would lie in the development of specific target compounds composed of derived RGD molecules, as this could represent a significant advancement in the field. 89Zr is produced within a medical cyclotron, a particle accelerator used in the production of radioisotopes, by using an 89Y coin as a solid target. The purity and stability of the produced solution have been analyzed using thin-layer chromatography and a γ spectrometer. The reaction protocol that yielded the best results involved the use of higher temperatures. Small peptides are particularly advantageous in this scenario, becouse they are not temperature-sensitive. The outcomes of the chelation protocols have been evaluated using chromatographic techniques such as HPLC and thin-layer chromatography.

Lo 89Zr è un radioisotopo con un'emivita di circa 78,4 ore, che lo rende particolarmente adatto per applicazioni in medicina nucleare. La sua stabilità e le proprietà di legame lo rendono un candidato interessante per l'etichettatura di biomolecole, consentendo l'osservazione e l'imaging di processi biologici specifici. Nella medicina nucleare, lo 89Zr viene utilizzato per etichettare agenti di targeting come gli anticorpi monoclonali e i piccoli peptidi. Il suo chelante bifunzionale per eccellenza è la deferoxamina, DFO. Si tratta di un composto sideroforo, che ha trovato spazio nella medicina nucleare per la sua capacità di legarsi saldamente ai metalli. Tuttavia, è emerso che il complesso [89Zr]ZrOx-DFO non fosse particolarmente stabile nel tempo, mostrando una tendenza al rilascio anticipato dello 89Zr, portando ad un suo accumulo nelle ossa. Per superare questa problematica negli ultimi anni, diversi studi si sono concentrati nello sviluppo di sistemi chelanti alternativi. Tra questi anche il DOTA (acido 1,4,7,10-tetraazaciclododecano-1,4,7,10-tetraacetico), si tratta di un chelante macrociclico. I chelanti macrociclici, a differenza di quelli aciclici, richiedono temperature più elevate per coordinarsi al radioisotopo. Il DOTA è in grado di legarsi allo 89Zr consentendo una stabile e specifica marcatura di biomolecole con applicazioni diagnostiche e terapeutiche. Un punto chiave è l'interesse nell'usare lo 89Zr per lo sviluppo di composti bersaglio specifici da usare nella PET (Tomografia a Emissione di Positroni). In particolare, si esplora la possibilità di utilizzare derivati RGD (arginina-glicina-aspartato), noti per la loro affinità con i recettori integrinici αvβ3 o αvβ5 e sovraespressi su cellule tumorali e neovascolari. Le integrine sono una famiglia di proteine di superficie cellulari coinvolte in numerosi processi biologici, tra cui l'adesione cellulare, la migrazione e la comunicazione cellulare. L'interesse diagnostico risiederebbe nell'elaborazione di composti bersaglio specifici costituiti da molecole RGD derivate, poiché ciò potrebbe rappresentare un notevole avanzamento nel settore. Lo 89Zr viene prodotto all’interno di un ciclotrone medico, acceleratore particellare utilizzato nella produzione di radioisotopi, utilizzando come target una moneta di 89Y. La purezza e la stabilità della soluzione prodotta sono state analizzate utilizzando la cromatografia su strato sottile e uno spettrometro γ. Il protocollo di reazione che ha dato risultati migliori ha implicato l'uso di temperature più elevate. I piccoli peptidi risultano particolarmente vantaggiosi in questa situazione poiché non sono sensibili alla temperatura. Gli esiti dei protocolli di chelazione sono stati valutati tramite tecniche cromatografiche, come HPLC e su strato sottile.

Ottimizzazione della produzione di [89Zr]ZrCl4 e valutazione di 1,4,7,10-tetraazociclododecano-1,4,7,10-tetraacetico (DOTA) come potenziale chelante bifunzionale per la preparazione di composti bersaglio-specifici

DIAKHATE, MOUSSOU
2023/2024

Abstract

89Zr is a radioisotope with a half-life of approximately 78.4 hours, making it particularly suitable for applications in nuclear medicine. Its stability and binding properties make it an interesting candidate for labeling biomolecules, allowing the observation of specific biological processes. In nuclear medicine, 89Zr is used to label targeting agents such as monoclonal antibodies and small peptides. Its primary bifunctional chelator is deferoxamine, DFO: a siderophore compound that has found its place in nuclear medicine due to its strong metal-binding capacity. However, it has been observed that the [89Zr]ZrOx-DFO complex is not particularly stable over time, showing a tendency for early release of 89Zr, leading to its accumulation in bones. To overcome this issue in the recent years, several studies have focused on developing alternative chelating systems. Among these, DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) a macrocyclic chelator, began to gain interest. Macrocyclic chelators, unlike acyclic ones, require higher temperatures to coordinate with the radioisotope. DOTA can bind to 89Zr, allowing stable and specific labeling of biomolecules with diagnostic and therapeutic purpose. A key point of interest is the use of 89Zr in developing specific target compounds for the Positron Emission Tomography (PET). Specifically, exploring the possibility of using arginine-glycine-aspartate (RGD) peptide derivatives, known for their affinity with αvβ3 or αvβ5 integrin receptors, which are overexpressed on tumor and neovascular cells. Integrins are a family of cell surface proteins involved in numerous biological processes, including cell adhesion, migration, and cell communication. The diagnostic interest would lie in the development of specific target compounds composed of derived RGD molecules, as this could represent a significant advancement in the field. 89Zr is produced within a medical cyclotron, a particle accelerator used in the production of radioisotopes, by using an 89Y coin as a solid target. The purity and stability of the produced solution have been analyzed using thin-layer chromatography and a γ spectrometer. The reaction protocol that yielded the best results involved the use of higher temperatures. Small peptides are particularly advantageous in this scenario, becouse they are not temperature-sensitive. The outcomes of the chelation protocols have been evaluated using chromatographic techniques such as HPLC and thin-layer chromatography.
2023
Optimization of [89Zr]ZrCl4 production and evaluation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) as a potential bifunctional chelating agent for the preparation of target-specific compounds
Lo 89Zr è un radioisotopo con un'emivita di circa 78,4 ore, che lo rende particolarmente adatto per applicazioni in medicina nucleare. La sua stabilità e le proprietà di legame lo rendono un candidato interessante per l'etichettatura di biomolecole, consentendo l'osservazione e l'imaging di processi biologici specifici. Nella medicina nucleare, lo 89Zr viene utilizzato per etichettare agenti di targeting come gli anticorpi monoclonali e i piccoli peptidi. Il suo chelante bifunzionale per eccellenza è la deferoxamina, DFO. Si tratta di un composto sideroforo, che ha trovato spazio nella medicina nucleare per la sua capacità di legarsi saldamente ai metalli. Tuttavia, è emerso che il complesso [89Zr]ZrOx-DFO non fosse particolarmente stabile nel tempo, mostrando una tendenza al rilascio anticipato dello 89Zr, portando ad un suo accumulo nelle ossa. Per superare questa problematica negli ultimi anni, diversi studi si sono concentrati nello sviluppo di sistemi chelanti alternativi. Tra questi anche il DOTA (acido 1,4,7,10-tetraazaciclododecano-1,4,7,10-tetraacetico), si tratta di un chelante macrociclico. I chelanti macrociclici, a differenza di quelli aciclici, richiedono temperature più elevate per coordinarsi al radioisotopo. Il DOTA è in grado di legarsi allo 89Zr consentendo una stabile e specifica marcatura di biomolecole con applicazioni diagnostiche e terapeutiche. Un punto chiave è l'interesse nell'usare lo 89Zr per lo sviluppo di composti bersaglio specifici da usare nella PET (Tomografia a Emissione di Positroni). In particolare, si esplora la possibilità di utilizzare derivati RGD (arginina-glicina-aspartato), noti per la loro affinità con i recettori integrinici αvβ3 o αvβ5 e sovraespressi su cellule tumorali e neovascolari. Le integrine sono una famiglia di proteine di superficie cellulari coinvolte in numerosi processi biologici, tra cui l'adesione cellulare, la migrazione e la comunicazione cellulare. L'interesse diagnostico risiederebbe nell'elaborazione di composti bersaglio specifici costituiti da molecole RGD derivate, poiché ciò potrebbe rappresentare un notevole avanzamento nel settore. Lo 89Zr viene prodotto all’interno di un ciclotrone medico, acceleratore particellare utilizzato nella produzione di radioisotopi, utilizzando come target una moneta di 89Y. La purezza e la stabilità della soluzione prodotta sono state analizzate utilizzando la cromatografia su strato sottile e uno spettrometro γ. Il protocollo di reazione che ha dato risultati migliori ha implicato l'uso di temperature più elevate. I piccoli peptidi risultano particolarmente vantaggiosi in questa situazione poiché non sono sensibili alla temperatura. Gli esiti dei protocolli di chelazione sono stati valutati tramite tecniche cromatografiche, come HPLC e su strato sottile.
radiofarmarcia
zirconio 89
sistemi chelanti
File in questo prodotto:
File Dimensione Formato  
DIAKHATE_MOUSSOU.pdf

accesso riservato

Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/62632