Space agencies worldwide are currently developing initiatives aimed at building human habitats on the Moon. Prioritizing environmental and economic sustainability is crucial for the successful establishment of lunar settlements while meeting the unique requirements of the moon. One method to achieve sustainable construction is by optimizing the utilization of raw materials obtained from the moon for 3D printing. The in-situ resource utilization (ISRU) concept envisages the use of raw materials available on the moon (or other planetary bodies) for the local manufacture of processed materials or infrastructure. Based on the ISRU approach, lunar regolith can be used as a locally sourced raw material to produce alkali-activated binders, which are suitable for the manufacture of building components. To facilitate the development of lunar infrastructure and habitats, the alkali-activated regolith-based material must withstand the harsh lunar environment, including significant temperature fluctuations, freeze-thaw cycles, high radiation levels, and frequent micrometeorite impacts. Furthermore, the material's rheological properties in the fresh state and the kinetics of setting and hardening are critical factors that must be compatible with its efficient extrusion during the initial phase of the 3D printing process. The first part of this study involves using X-ray powder diffraction (XRPD) analysis and energy dispersive spectroscopy scanning electron microscopy (EDS-SEM) to identify the present mineral phases and elemental composition of the LMS-1D lunar regolith simulant, as well as its reactivity in the alkali activation process. The next step is to use the Design of Experiments (DOE) approach to optimize the formulation of an alkali-activated regolith simulant-based material. This involves understanding the impact of critical factors, including the type and quantity of alkaline activator, the addition of reactive powders, and the curing temperature, on the system's rheological and mechanical properties. The results of the DoE model are then validated by formulating a set of control samples and analyzing their mechanical strength, rheological properties, mineralogical composition, and micro structural features. Finally, an optimal formulation is selected as a reference material for the realization of 3D printed building units to be used in the construction of lunar habitable facilities.
Le agenzie spaziali di tutto il mondo stanno attualmente sviluppando iniziative volte a costruire habitat umani sulla Luna. Dare priorità alla sostenibilità ambientale ed economica è fondamentale per il successo della creazione di insediamenti lunari, soddisfacendo al tempo stesso i requisiti unici della luna. Un approccio sostenibile alla costruzione in ambiente lunare implica un approvvigionamento in loco delle materie prime da utilizzare per la produzione di leganti. Il concetto di utilizzo delle risorse in situ (ISRU – In Situ Resource Utilization) prevede l’utilizzo di materie prime disponibili sulla Luna (o su altri corpi planetari) per la produzione locale di materiali lavorati o infrastrutture. Sulla base dell’approccio ISRU, la regolite lunare può essere utilizzata come materia prima di provenienza locale per produrre leganti ad attivazione alcalina, adatti alla produzione di materiali da costruzione. Per facilitare lo sviluppo di infrastrutture e habitat lunari, il materiale a base di regolite ad attivazione alcalina deve essere compatibile alle condizioni ambientali presenti sulla luna, comprese le significative fluttuazioni di temperatura, i cicli di gelo-disgelo, gli alti livelli di radiazioni e i frequenti impatti di micrometeoriti. Inoltre, le proprietà reologiche del materiale allo stato fresco e la cinetica di presa e indurimento sono fattori critici che devono essere compatibili con una sua efficiente estrusione durante la fase iniziale del processo di stampa 3D da utilizzare per la messa in posto delle unità strutturali. La prima parte di questo studio prevede l'utilizzo della diffrazione dei raggi X su polveri (XRPD) e della spettroscopia a dispersione di energia al microscopio elettronico a scansione (EDS-SEM) per identificare le fasi minerali presenti e la composizione elementare del simulante della regolite lunare LMS-1D, nonché la sua reattività durante processo di attivazione alcalina. Il passo successivo consiste nell'utilizzare l'approccio di Design of Experiments (DOE) per ottimizzare la formulazione di regolite ad attivazione alcalina. Ciò implica l’analisi dell'impatto di fattori critici, tra cui il tipo e la quantità di attivatore alcalino, l'aggiunta di polveri reattive e la temperatura di maturazione, sulle proprietà reologiche e meccaniche del sistema. I risultati del modello DoE vengono quindi convalidati formulando una serie di campioni di controllo e analizzandone la resistenza meccanica, le proprietà reologiche, la composizione mineralogica e le caratteristiche microstrutturali. Infine, viene selezionata una formulazione ottimale come materiale di riferimento per la realizzazione di unità strutturali mediante stampa 3D, da utilizzare nella costruzione di habitat lunari.
Alkali Activation Of Lunar Regolith Simulants: A Sustainable Approach For In-Situ resource utilization
GOUDARZI, AHMAD
2023/2024
Abstract
Space agencies worldwide are currently developing initiatives aimed at building human habitats on the Moon. Prioritizing environmental and economic sustainability is crucial for the successful establishment of lunar settlements while meeting the unique requirements of the moon. One method to achieve sustainable construction is by optimizing the utilization of raw materials obtained from the moon for 3D printing. The in-situ resource utilization (ISRU) concept envisages the use of raw materials available on the moon (or other planetary bodies) for the local manufacture of processed materials or infrastructure. Based on the ISRU approach, lunar regolith can be used as a locally sourced raw material to produce alkali-activated binders, which are suitable for the manufacture of building components. To facilitate the development of lunar infrastructure and habitats, the alkali-activated regolith-based material must withstand the harsh lunar environment, including significant temperature fluctuations, freeze-thaw cycles, high radiation levels, and frequent micrometeorite impacts. Furthermore, the material's rheological properties in the fresh state and the kinetics of setting and hardening are critical factors that must be compatible with its efficient extrusion during the initial phase of the 3D printing process. The first part of this study involves using X-ray powder diffraction (XRPD) analysis and energy dispersive spectroscopy scanning electron microscopy (EDS-SEM) to identify the present mineral phases and elemental composition of the LMS-1D lunar regolith simulant, as well as its reactivity in the alkali activation process. The next step is to use the Design of Experiments (DOE) approach to optimize the formulation of an alkali-activated regolith simulant-based material. This involves understanding the impact of critical factors, including the type and quantity of alkaline activator, the addition of reactive powders, and the curing temperature, on the system's rheological and mechanical properties. The results of the DoE model are then validated by formulating a set of control samples and analyzing their mechanical strength, rheological properties, mineralogical composition, and micro structural features. Finally, an optimal formulation is selected as a reference material for the realization of 3D printed building units to be used in the construction of lunar habitable facilities.File | Dimensione | Formato | |
---|---|---|---|
GOUDARZI_AHMAD.pdf
accesso aperto
Dimensione
39.67 MB
Formato
Adobe PDF
|
39.67 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/65759