Title. Endometrial cancer: validation of molecular classification in endometrial biopsy in pre-operative staging. Introduction. Endometrial cancer is the sixth most frequent cancer among women worldwide, with a rising trend in recent years. The Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE), published in 2017, divided endometrial cancer into four subgroups, each with a different prognosis: MMRd, p53abn, NSMP and POLEmut. The 2021 ESGO/ESTRO/ESP guidelines recommend the use of molecular classification in all patients with endometrial cancer to define risk groups, prognosis, and adjuvant therapy. Purpose of the study. To validate the concordance of histotype, grading, IHC and molecular classification between diagnostic biopsy and definitive post-surgical analysis. Materials and methods. This observational prospective study was carried out on patients who were diagnosed with endometrial carcinoma at our hospital. For each patient, histotype, grading, IHC and molecular classification were evaluated on the diagnostic biopsy and final specimen after total hysterectomy. The K- Cohen coefficient was used to estimate the concordance between these parameters. Results. Fifty patients were enrolled from November 2023 to April 2024. The concordance for MMRd and p53abn is 90.5% and 93.5%, respectively, while POLEmut has perfect agreement. The overall agreement on molecular classification has a K-Cohen value of 0.882 (IC95% 0.752-0.969). For histotype and grading, the values obtained are 0.896 (IC95% 0.755-1.000) and 0.797 (IC95% 0.629-0.964), respectively. In all three cases, the strength of agreement is good to very good. Conclusions. With this study, IHC and molecular analysis on preoperative biopsy is validated with a high degree of concordance with the definitive analysis. The use of IHC and molecular analysis on biopsy enables the selection of personalized surgery.
Titolo. Validazione della classificazione molecolare nella biopsia del carcinoma endometriale nello staging preoperatorio. Background. Il tumore dell’endometrio è la sesta neoplasia più frequente tra le donne a livello mondiale, con una tendenza in aumento negli ultimi anni. Il Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE), pubblicato nel 2017, ha suddiviso i carcinomi endometriali in quattro sottogruppi, ciascuno con una diversa prognosi: MMRd, p53abn, NSMP e POLEmut. Le linee guida ESGO/ESTRO/ESP del 2021 raccomandano l’uso della classificazione molecolare in tutte le pazienti con carcinoma endometriale per definire i gruppi di rischio, prognosi e terapia adiuvante. Scopo dello studio. Validare la concordanza di istotipo, grading, IHC e classificazione molecolare tra biopsia diagnostica e analisi definitiva post-chirurgica. Materiali e metodi. Lo studio è osservazionale prospettico condotto su pazienti che hanno ricevuto diagnosi di carcinoma endometriale presso il nostro istituto. Per ciascuna paziente, sulla biopsia diagnostica e sul campione definitivo dopo isterectomia totale sono stati valutati istotipo, grading, IHC e classificazione molecolare. Per stimare la concordanza tra questi parametri è stato utilizzato il coefficiente K- Cohen. Risultati. Sono state arruolate 50 pazienti nel periodo novembre 2023 - aprile 2024. La concordanza per MMRd e p53abn è rispettivamente del 90,5% e 93,5%, mentre POLEmut ha un livello di concordanza perfetto. La concordanza complessiva sulla classificazione molecolare ha un valore di K-Cohen di 0,882 (IC95% 0,752-0,969). Per l'istotipo e il grading, i valori ottenuti sono rispettivamente 0,896 (IC95% 0,755-1,000) e 0,797 (IC95% 0,629-0,964). In tutti e tre i casi, la forza di concordanza è da buona a ottima. Conclusioni. Con questo studio viene validata l’analisi IHC e molecolare sulla biopsia preoperatoria con alto grado di concordanza con l’analisi definitiva. L' uso dell'analisi IHC e molecolare sulla biopsia consente di scegliere una chirurgia personalizzata.
Validazione della classificazione molecolare nella biopsia del carcinoma endometriale nello staging preoperatorio
MARAGNO, AURORA
2023/2024
Abstract
Title. Endometrial cancer: validation of molecular classification in endometrial biopsy in pre-operative staging. Introduction. Endometrial cancer is the sixth most frequent cancer among women worldwide, with a rising trend in recent years. The Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE), published in 2017, divided endometrial cancer into four subgroups, each with a different prognosis: MMRd, p53abn, NSMP and POLEmut. The 2021 ESGO/ESTRO/ESP guidelines recommend the use of molecular classification in all patients with endometrial cancer to define risk groups, prognosis, and adjuvant therapy. Purpose of the study. To validate the concordance of histotype, grading, IHC and molecular classification between diagnostic biopsy and definitive post-surgical analysis. Materials and methods. This observational prospective study was carried out on patients who were diagnosed with endometrial carcinoma at our hospital. For each patient, histotype, grading, IHC and molecular classification were evaluated on the diagnostic biopsy and final specimen after total hysterectomy. The K- Cohen coefficient was used to estimate the concordance between these parameters. Results. Fifty patients were enrolled from November 2023 to April 2024. The concordance for MMRd and p53abn is 90.5% and 93.5%, respectively, while POLEmut has perfect agreement. The overall agreement on molecular classification has a K-Cohen value of 0.882 (IC95% 0.752-0.969). For histotype and grading, the values obtained are 0.896 (IC95% 0.755-1.000) and 0.797 (IC95% 0.629-0.964), respectively. In all three cases, the strength of agreement is good to very good. Conclusions. With this study, IHC and molecular analysis on preoperative biopsy is validated with a high degree of concordance with the definitive analysis. The use of IHC and molecular analysis on biopsy enables the selection of personalized surgery.File | Dimensione | Formato | |
---|---|---|---|
Maragno_Aurora.pdf
accesso riservato
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/65809