Background: Ovarian cancer represents a significant medical challenge, frequently diagnosed in advanced stages, leading to high mortality rates. An appropriate diagnostic and therapeutic approach is crucial, directing patients to specialized oncological centers. Transvaginal ultrasound (TV-US) plays a fundamental role in diagnosis, allowing the identification and characterization of masses in the adnexal regions. Preoperative characterization of these masses is essential to determine malignancy risk and guide treatment: benign masses can be managed with conservative interventions or monitoring, while malignant masses require radical surgical interventions. However, TV-US has interpretative limitations and depends on the operator's experience. To support less experienced operators, groups like IOTA and ACR have developed methods such as Easy Descriptors (ED), ADNEX, and O-RADS, which improve the precision in characterizing ovarian masses and optimize clinical management. Objective: This study aims to evaluate the diagnostic accuracy of various models in the preoperative discrimination between benign and malignant adnexal masses. The IOTA models, including Easy Descriptors and ADNEX, were compared with O-RADS, developed by the American College of Radiology (ACR). Additionally, the effectiveness of a two-step diagnostic approach was evaluated, combining Easy Descriptors and ADNEX in cases where the former were inconclusive. Materials and Methods: This retrospective observational study analyzed the diagnostic accuracy of the IOTA Easy Descriptors, ADNEX, and O-RADS models in discriminating between benign and malignant adnexal masses. A total of 331 patients with a diagnosis of adnexal mass who underwent surgery between January 2022 and March 2024 were included. Data on age, menopausal status, and CA125 levels were collected. All patients were evaluated with transvaginal ultrasound by sonographers, and Easy Descriptors, ADNEX, and O-RADS were calculated. Postoperative histological diagnosis was compared with the estimated malignancy risk from the models. Results: The study confirmed the good performance of the IOTA and O-RADS criteria. All studied models demonstrated high sensitivity, exceeding 90%, but lower specificity (81.2% for ADNEX, 79.8% for O-RADS, and 81.6% for the ED + ADNEX model). The ADNEX model and the ED + ADNEX strategy showed better performance, not only in terms of specificity but also in positive predictive value (PPV) compared to O-RADS (ADNEX 74; ED + ADNEX 74.5; O-RADS 72.0) in characterizing adnexal masses. Additionally, with a cutoff of 29% for the ADNEX model, results improved, showing a specificity of 94.12% and a PPV of 89.9%. Conclusions: Transvaginal ultrasound plays a crucial role in the preoperative evaluation of adnexal masses. The models proposed by IOTA and ACR have significantly improved the ability to discriminate between malignant and benign masses. In particular, the ADNEX model and the two-step approach demonstrated superior performance due to higher specificity and positive predictive value (PPV). The adoption of standardized methodologies facilitates a more accurate use of ultrasound techniques, allowing optimized patient management even by less experienced operators.
Presupposti dello studio: Il carcinoma ovarico rappresenta una significativa sfida medica, frequentemente diagnosticato in stadi avanzati, con conseguente elevato tasso di mortalità. È cruciale un approccio diagnostico e terapeutico appropriato, indirizzando le pazienti verso centri oncologici specializzati. L'ecografia transvaginale (TV-US) svolge un ruolo fondamentale nella diagnosi, consentendo di identificare e caratterizzare le masse nelle regioni annessiali. La caratterizzazione preoperatoria delle masse è essenziale per determinare il rischio di malignità e guidare il trattamento: le masse benigne possono essere gestite con interventi conservativi o monitoraggio, mentre quelle maligne richiedono interventi chirurgici radicali. Tuttavia, l'ecografia transvaginale presenta limitazioni interpretative e dipende dall'esperienza dell'operatore. Per supportare gli operatori meno esperti, gruppi come IOTA e ACR hanno sviluppato metodiche come Easy Descriptors (ED), ADNEX e O-RADS, che migliorano la precisione nella caratterizzazione delle masse ovariche e ottimizzano la gestione clinica. Obiettivo dello studio: Questo studio mira a valutare l'accuratezza diagnostica di diversi modelli nella discriminazione preoperatoria tra masse annessiali benigne e maligne. I modelli IOTA, inclusi Easy Descriptors e ADNEX, sono stati confrontati con O-RADS, sviluppato dall'American College of Radiology (ACR). Inoltre, è stata valutata l'accuratezza di un modello in due fasi, combinando Easy Descriptors e ADNEX quando i primi risultavano inconcludenti. Materiali e metodi: Questo studio retrospettivo osservazionale ha analizzato l'accuratezza diagnostica dei modelli IOTA Easy Descriptors, ADNEX e O-RADS nella discriminazione tra masse annessiali benigne e maligne. Sono stati inclusi 331 pazienti con diagnosi di massa annessiale, sottoposti a intervento chirurgico tra gennaio 2022 e marzo 2024. Sono stati raccolti dati su età, stato menopausale e livelli di CA125. Tutte le pazienti sono state valutate con ecografia transvaginale da ecografisti, e sono stati calcolati Easy Descriptors, ADNEX e O-RADS. La diagnosi istologica post-operatoria è stata confrontata con il rischio di malignità stimato dai modelli. Risultati: Lo studio ha confermato le buone prestazioni dei criteri IOTA e O-RADS. Tutti i modelli studiati hanno dimostrato elevata sensibilità, superiore al 90%, ma una specificità minore (81,2% per ADNEX, 79,8% per O-RADS e 81,6% per il modello ED + ADNEX). Il modello ADNEX e la strategia ED+ADNEX hanno dimostrato prestazioni migliori, non solo in termini di specificità ma anche di valore predittivo positivo (VPP) rispetto a O-RADS (ADNEX 74,0; ED+ADNEX 74,5; ORADS 72,0) nella caratterizzazione delle masse annessiali. Inoltre, con un cutoff del 29% per il modello ADNEX, si osserva un miglioramento dei risultati, con una specificità del 94,12% e un VPP dell'89,9%. Conclusioni: L'ecografia transvaginale svolge un ruolo cruciale nella valutazione preoperatoria delle masse annessiali. I modelli proposti da IOTA e ACR hanno notevolmente migliorato la capacità di discriminare tra masse maligne e benigne. In particolare, il modello ADNEX e l'approccio in due fasi hanno dimostrato prestazioni superiori grazie a una specificità e un valore predittivo positivo (PPV) più elevati. L’adozione di metodologie standardizzate facilita un uso più accurato delle tecniche ecografiche, consentendo una gestione ottimizzata delle pazienti anche da parte di operatori meno esperti.
Modelli IOTA e O-RADS: identificazione del miglior strumento ecografico nella valutazione delle masse annessiali
SARUBBI, MARIA FRANCESCA
2023/2024
Abstract
Background: Ovarian cancer represents a significant medical challenge, frequently diagnosed in advanced stages, leading to high mortality rates. An appropriate diagnostic and therapeutic approach is crucial, directing patients to specialized oncological centers. Transvaginal ultrasound (TV-US) plays a fundamental role in diagnosis, allowing the identification and characterization of masses in the adnexal regions. Preoperative characterization of these masses is essential to determine malignancy risk and guide treatment: benign masses can be managed with conservative interventions or monitoring, while malignant masses require radical surgical interventions. However, TV-US has interpretative limitations and depends on the operator's experience. To support less experienced operators, groups like IOTA and ACR have developed methods such as Easy Descriptors (ED), ADNEX, and O-RADS, which improve the precision in characterizing ovarian masses and optimize clinical management. Objective: This study aims to evaluate the diagnostic accuracy of various models in the preoperative discrimination between benign and malignant adnexal masses. The IOTA models, including Easy Descriptors and ADNEX, were compared with O-RADS, developed by the American College of Radiology (ACR). Additionally, the effectiveness of a two-step diagnostic approach was evaluated, combining Easy Descriptors and ADNEX in cases where the former were inconclusive. Materials and Methods: This retrospective observational study analyzed the diagnostic accuracy of the IOTA Easy Descriptors, ADNEX, and O-RADS models in discriminating between benign and malignant adnexal masses. A total of 331 patients with a diagnosis of adnexal mass who underwent surgery between January 2022 and March 2024 were included. Data on age, menopausal status, and CA125 levels were collected. All patients were evaluated with transvaginal ultrasound by sonographers, and Easy Descriptors, ADNEX, and O-RADS were calculated. Postoperative histological diagnosis was compared with the estimated malignancy risk from the models. Results: The study confirmed the good performance of the IOTA and O-RADS criteria. All studied models demonstrated high sensitivity, exceeding 90%, but lower specificity (81.2% for ADNEX, 79.8% for O-RADS, and 81.6% for the ED + ADNEX model). The ADNEX model and the ED + ADNEX strategy showed better performance, not only in terms of specificity but also in positive predictive value (PPV) compared to O-RADS (ADNEX 74; ED + ADNEX 74.5; O-RADS 72.0) in characterizing adnexal masses. Additionally, with a cutoff of 29% for the ADNEX model, results improved, showing a specificity of 94.12% and a PPV of 89.9%. Conclusions: Transvaginal ultrasound plays a crucial role in the preoperative evaluation of adnexal masses. The models proposed by IOTA and ACR have significantly improved the ability to discriminate between malignant and benign masses. In particular, the ADNEX model and the two-step approach demonstrated superior performance due to higher specificity and positive predictive value (PPV). The adoption of standardized methodologies facilitates a more accurate use of ultrasound techniques, allowing optimized patient management even by less experienced operators.File | Dimensione | Formato | |
---|---|---|---|
Sarubbi_MariaFrancesca.pdf
accesso riservato
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/65820