Polyethylene glycol (PEG)-based hydrogels represent a promising class of biomaterials used in various clinical applications due to their unique characteristics such as biocompatibility, high water absorption capacity, and the possibility of being chemically modified. These materials are particularly interesting for tissue engineering and regenerative medicine, where their elasticity, viscoelasticity, and poroviscoelasticity play a key role. The mechanical characterization of PEG hydrogels is fundamental to understanding and predicting their behavior under load, which is essential for the design of effective biomedical devices. The mechanical properties have been and continue to be the subject of study and research to ensure their suitability in clinical applications. The analysis of constitutive equations and mathematical models has highlighted the complexity of the mechanical behavior of hydrogels, which determines their great versatility but also the complexity of study. PEG hydrogels offer significant advantages, including the ability to form cross-linked structures through enzymatic or physical reactions, allowing the creation of materials with customizable properties based on specific needs. Their ability to release drugs in a controlled manner makes them ideal for tissue regeneration, particularly for bone and cartilage regeneration, but also in the cardiovascular field, where they show excellent potential. Despite the progress, challenges remain to be addressed, such as the need to further improve the physical and chemical properties of hydrogels to optimize their effectiveness in clinical applications. Research continues to explore new combinations of materials and technologies to develop innovative solutions that improve the quality of life for patients. PEG hydrogels represent an advanced frontier in the field of biomaterials, with enormous potential applications, offering new therapeutic opportunities and promising significant improvements in the treatment of degenerative diseases.
Gli hydrogel a base di polietilenglicole (PEG) rappresentano una classe promettente di biomateriali utilizzati in diverse applicazioni cliniche grazie alle loro caratteristiche uniche come la biocompatibilità, l’elevata capacità di assorbire acqua e la possibilità di essere modificati chimicamente. Questi materiali sono particolarmente interessanti per l’ingegneria tissutale e la medicina rigenerativa, dove la loro elasticità, viscoelasticità e poroviscoelasticità giocano un ruolo chiave. La caratterizzazione meccanica degli hydrogel PEG è fondamentale per comprendere e prevedere il loro comportamento sotto carico, essenziale per la progettazione di dispositivi biomedicali efficaci. Le proprietà meccaniche sono state e sono tutt’ora oggetto di studio e ricerca per garantire la loro idoneità nelle applicazioni cliniche. L’analisi delle equazioni costitutive e dei modelli matematici ha evidenziato la complessità del comportamento meccanico degli hydrogel, che ne determina la grande versatilità ma anche la complessità di studio. Gli hydrogel PEG offrono vantaggi significativi, tra cui la capacità di formare strutture reticolate attraverso reazioni enzimatiche o fisiche, che consentono di ottenere materiali con proprietà personalizzabili in base alle esigenze specifiche. La loro capacità di rilasciare farmaci in modo controllato li rende ideali per la rigenerazione tissutale, in particolare per la rigenerazione ossea e cartilaginea, ma non solo, anche in campo cardiovascolare mostrano ottime potenzialità. Nonostante i progressi, esistono ancora sfide da superare, come la necessità di migliorare ulteriormente le proprietà fisiche e chimiche degli hydrogel per ottimizzare la loro efficacia nelle applicazioni cliniche. La ricerca continua a esplorare nuove combinazioni di materiali e tecnologie per sviluppare soluzioni innovative che migliorino la qualità della vita dei pazienti. Gli hydrogel PEG rappresentano una frontiera avanzata nel campo dei biomateriali, con potenziali applicazioni enormi, offrendo nuove opportunità terapeutiche e promettendo significativi miglioramenti nella cura delle patologie degenerative.
Caratterizzazione meccanica di hydrogel a base PEG: analisi elastica, viscoelastica e poro-viscoelastica.
BERNARDELLE, CRISTIANO
2023/2024
Abstract
Polyethylene glycol (PEG)-based hydrogels represent a promising class of biomaterials used in various clinical applications due to their unique characteristics such as biocompatibility, high water absorption capacity, and the possibility of being chemically modified. These materials are particularly interesting for tissue engineering and regenerative medicine, where their elasticity, viscoelasticity, and poroviscoelasticity play a key role. The mechanical characterization of PEG hydrogels is fundamental to understanding and predicting their behavior under load, which is essential for the design of effective biomedical devices. The mechanical properties have been and continue to be the subject of study and research to ensure their suitability in clinical applications. The analysis of constitutive equations and mathematical models has highlighted the complexity of the mechanical behavior of hydrogels, which determines their great versatility but also the complexity of study. PEG hydrogels offer significant advantages, including the ability to form cross-linked structures through enzymatic or physical reactions, allowing the creation of materials with customizable properties based on specific needs. Their ability to release drugs in a controlled manner makes them ideal for tissue regeneration, particularly for bone and cartilage regeneration, but also in the cardiovascular field, where they show excellent potential. Despite the progress, challenges remain to be addressed, such as the need to further improve the physical and chemical properties of hydrogels to optimize their effectiveness in clinical applications. Research continues to explore new combinations of materials and technologies to develop innovative solutions that improve the quality of life for patients. PEG hydrogels represent an advanced frontier in the field of biomaterials, with enormous potential applications, offering new therapeutic opportunities and promising significant improvements in the treatment of degenerative diseases.File | Dimensione | Formato | |
---|---|---|---|
Bernardelle_Cristiano.pdf
accesso riservato
Dimensione
1.71 MB
Formato
Adobe PDF
|
1.71 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/67413