One Class Classification (OCC) is a specific case of multiclass classification. Its objective is to create a model that can recognize anomalous values within a dataset. To achieve this, OCC relies on specific training with only one class of objects, referred to as the positive class. OCC is applied in various contexts such as artificial intelligence, statistics, computer vision, and biometric studies. This thesis begins with an introduction to OCC and the concept of anomaly. It subsequently examines in detail the main OCC strategies: Support Vector Data Description (SVDD), Isolation Forest, Autoencoder, and Principal Component Analysis (PCA).
One Class Classification (OCC) è un caso particolare di classificazione multiclasse. Il suo obiettivo consiste nel creare un modello il quale riesca a riconoscere valori anomali all’interno di un dataset: per farlo OCC si basa su un allenamento specifico a una unica classe di oggetti chiamata classe positiva. Viene applicata in numerosi contesti quali intelligenza artificiale, statistica, visione computerizzata e studi biometrici. Questa tesi inizia con una introduzione al mondo di OCC e il concetto di anomalia. Verranno successivamente analizzate nel dettaglio le strategie principali di OCC: descrizione dati con vettori di supporto (SVDD), foresta di isolamento (Isolation Forest), autocodificatore (Autoencoder) e analisi delle componenti principali (PCA).
Tecniche di one-class classification
FURLAN, DAVIDE
2023/2024
Abstract
One Class Classification (OCC) is a specific case of multiclass classification. Its objective is to create a model that can recognize anomalous values within a dataset. To achieve this, OCC relies on specific training with only one class of objects, referred to as the positive class. OCC is applied in various contexts such as artificial intelligence, statistics, computer vision, and biometric studies. This thesis begins with an introduction to OCC and the concept of anomaly. It subsequently examines in detail the main OCC strategies: Support Vector Data Description (SVDD), Isolation Forest, Autoencoder, and Principal Component Analysis (PCA).File | Dimensione | Formato | |
---|---|---|---|
Furlan_Davide.pdf
accesso aperto
Dimensione
534.89 kB
Formato
Adobe PDF
|
534.89 kB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/67629