In the initial period of the industrial revolution, between the mid-1800s and early 1900s, there has been an ever-increasing release of carbon dioxide (CO₂) into the atmosphere, caused by the high use of fossil fuels as a source of energy for the industries of the time, such as oil and coal among the main ones. Carbon dioxide has long been considered one of the most important greenhouse gases, and consequently an increase in the concentration of this gas leads to a subsequent increase in the earth's temperature. This suggests that the temperature increase curve coincides with that of the carbon dioxide increase, however between the mid-19th century and the beginning of the 20th century the temperature increase did not follow the carbon dioxide increase. This discordant data could be explained thanks to the numerous volcanic eruptions that occurred in the same period. Volcanic eruptions are among the few natural phenomena capable of modifying the Earth's climate, due to the emission of numerous volcanic compounds into the stratosphere, among which sulfur dioxide (SO₂) is of particular importance. Not all volcanic eruptions are capable of influencing the Earth's climate, but only eruptions with an explosive index (VEI) higher than 5 have significant consequences on a global scale, considering the high emission of volcanic compounds (especially sulfur) in the atmosphere, which are able to influence the amount of incident solar radiation that reaches the Earth's surface. During the period considered, eruptions of high magnitude occurred which may have contributed to lowering the global temperature in the period considered, despite the constant and growing release of carbon dioxide in high quantities into the atmosphere. In the following thesis the eruptions of Tambora in 1815, Krakatoa in 1883 and Novarupta in 1912 will be taken into consideration. The concentrations of mercury inside the growth rings of a larch specimen (Larix decidua Mill.) were then measured using a new technique, dendrochemistry.

Nel periodo iniziale della rivoluzione industriale, tra la metà del 1800 e l’inizio del 1900, è avvenuta una sempre più crescente immissione di anidride carbonica (CO₂) nell’atmosfera, causato dall’elevato impiego di combustibili fossili come fonte di energia per le industrie dell’epoca, quali petrolio e carbone, tra i principali. L’anidride carbonica è considerato uno dei gas serra più importanti, di conseguenza un aumento della concentrazione di questo gas comporta un seguente aumento della temperatura terrestre. Questo fa presupporre che la curva di incremento della temperatura, coincida con quella dell’incremento di anidride carbonica; tuttavia tra la metà del 19esimo secolo e l’inizio del 20esimo secolo l’incremento della temperatura non segue detto l’incremento di anidride carbonica. Questo dato discordante potrebbe essere spiegato grazie a numerose eruzioni vulcaniche verificatesi nello stesso periodo. Le eruzioni vulcaniche sono tra i pochi fenomeni naturali in grado di modificare il clima terrestre, a causa dell’emissione nella stratosfera di numerosi composti vulcanici, tra i quali, ricopre particolare importanza l’anidride solforosa (SO₂). Non tutte le eruzioni vulcaniche sono in grado di influenzare il clima terrestre: solo le eruzioni con un indice di esplosività (VEI) superiore a 5, hanno conseguenze rilevanti su scala globale, considerando l’elevata emissione di composti vulcanici (soprattutto solforati) nell’atmosfera, che sono in grado di influenzare la quantità di radiazione solare incidente che arriva sulla superfice terrestre. Durante il periodo considerato si sono verificate eruzioni di magnitudo elevata che potrebbero aver contribuito ad abbassare la temperatura globale nel periodo considerato, nonostante la costante e crescente immissione di anidride carbonica in elevata quantità in atmosfera. Nella seguente tesi verranno presi in considerazione le eruzioni del Tambora nel 1815, del Krakatoa nel 1883 e del Novarupta nel 1912. Sono quindi state misurate le concentrazioni di mercurio all’interno degli anelli di accrescimento di un larice (Larix decidua Mill.), tramite una nuova tecnica, la dendrochimica.

Eruzioni vulcaniche e cambiamenti climatici: evidenze dall'analisi di mercurio in anelli di crescita del XIX secolo.

CARRETTA, MATTIA
2023/2024

Abstract

In the initial period of the industrial revolution, between the mid-1800s and early 1900s, there has been an ever-increasing release of carbon dioxide (CO₂) into the atmosphere, caused by the high use of fossil fuels as a source of energy for the industries of the time, such as oil and coal among the main ones. Carbon dioxide has long been considered one of the most important greenhouse gases, and consequently an increase in the concentration of this gas leads to a subsequent increase in the earth's temperature. This suggests that the temperature increase curve coincides with that of the carbon dioxide increase, however between the mid-19th century and the beginning of the 20th century the temperature increase did not follow the carbon dioxide increase. This discordant data could be explained thanks to the numerous volcanic eruptions that occurred in the same period. Volcanic eruptions are among the few natural phenomena capable of modifying the Earth's climate, due to the emission of numerous volcanic compounds into the stratosphere, among which sulfur dioxide (SO₂) is of particular importance. Not all volcanic eruptions are capable of influencing the Earth's climate, but only eruptions with an explosive index (VEI) higher than 5 have significant consequences on a global scale, considering the high emission of volcanic compounds (especially sulfur) in the atmosphere, which are able to influence the amount of incident solar radiation that reaches the Earth's surface. During the period considered, eruptions of high magnitude occurred which may have contributed to lowering the global temperature in the period considered, despite the constant and growing release of carbon dioxide in high quantities into the atmosphere. In the following thesis the eruptions of Tambora in 1815, Krakatoa in 1883 and Novarupta in 1912 will be taken into consideration. The concentrations of mercury inside the growth rings of a larch specimen (Larix decidua Mill.) were then measured using a new technique, dendrochemistry.
2023
Volcanic eruptions and climate change: evidence from analysis of mercury in 19th century growth rings.
Nel periodo iniziale della rivoluzione industriale, tra la metà del 1800 e l’inizio del 1900, è avvenuta una sempre più crescente immissione di anidride carbonica (CO₂) nell’atmosfera, causato dall’elevato impiego di combustibili fossili come fonte di energia per le industrie dell’epoca, quali petrolio e carbone, tra i principali. L’anidride carbonica è considerato uno dei gas serra più importanti, di conseguenza un aumento della concentrazione di questo gas comporta un seguente aumento della temperatura terrestre. Questo fa presupporre che la curva di incremento della temperatura, coincida con quella dell’incremento di anidride carbonica; tuttavia tra la metà del 19esimo secolo e l’inizio del 20esimo secolo l’incremento della temperatura non segue detto l’incremento di anidride carbonica. Questo dato discordante potrebbe essere spiegato grazie a numerose eruzioni vulcaniche verificatesi nello stesso periodo. Le eruzioni vulcaniche sono tra i pochi fenomeni naturali in grado di modificare il clima terrestre, a causa dell’emissione nella stratosfera di numerosi composti vulcanici, tra i quali, ricopre particolare importanza l’anidride solforosa (SO₂). Non tutte le eruzioni vulcaniche sono in grado di influenzare il clima terrestre: solo le eruzioni con un indice di esplosività (VEI) superiore a 5, hanno conseguenze rilevanti su scala globale, considerando l’elevata emissione di composti vulcanici (soprattutto solforati) nell’atmosfera, che sono in grado di influenzare la quantità di radiazione solare incidente che arriva sulla superfice terrestre. Durante il periodo considerato si sono verificate eruzioni di magnitudo elevata che potrebbero aver contribuito ad abbassare la temperatura globale nel periodo considerato, nonostante la costante e crescente immissione di anidride carbonica in elevata quantità in atmosfera. Nella seguente tesi verranno presi in considerazione le eruzioni del Tambora nel 1815, del Krakatoa nel 1883 e del Novarupta nel 1912. Sono quindi state misurate le concentrazioni di mercurio all’interno degli anelli di accrescimento di un larice (Larix decidua Mill.), tramite una nuova tecnica, la dendrochimica.
Eruzioni vulcaniche
Clima
Dendrochimica
File in questo prodotto:
File Dimensione Formato  
Tesi Mattia Carretta. (14) (1).pdf

accesso aperto

Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/67850