Turbulent and multiphase flows have a fundamental role in the design phase not only in the engineering field. Nowadays, the investigation of such flows is mainly based on the numerical simulations, thanks to lower costs, times and complexity compare to experimental investigations. In this thesis project, multiphase flows are considered, with a generic fluid as carrier and solid particles as secondary phase. Since dilute condition are hypothesized, one-way fluid-particle coupling is used. The flow is simulated with the Direct Numerical Simulation (DNS) implemented in CaNS, an open-source code. For the purposes of simulating complex flow geometries, an Immersed Boundary Method (IBM) is adopted, in particular an Eikonal equation IBM is used, coupled with a Signed Distance Function. The particles motion is simulated in parallel to the flow by solving the equations of motion. In addition to the particle motion, also the collision over rigid bodies is modelled. These rigid walls are modelled with the IMB, taking advantage of the Signed Distance Function properties. The numerical method developed for this thesis project is validate through a qualitative comparison with results available in literature, in particular the flow over a cylinder is tested.
Flussi turbolenti e flussi multifase ricoprono un ruolo fondamentale nella progettazione in ambito ingegneristico e non solo. La loro investigazione oggi si basa principalmente su tecniche di simulazione numerica, riducendo tempi, costi e complessità rispetto ad indagini sperimentali. In questo progetto di tesi si considerano flussi multifase in cui la fase principale è un generico fluido e la fase secondaria sono delle particelle solide. Sono state ipotizzate condizioni diluite e pertanto viene utilizzato un modello di interazione fluido-particella a singola via. Il flusso è simulato tramite tecniche di Simulazione Numerica Diretta (DNS) implementate nel codice open-source CaNS. Al fine di simulare geometrie complesse si ricorre a tecniche di Immersed Boundary Method (IBM), in particolare viene adottato un IBM tramite equazione Iconale e Signed Distance Function. Il moto delle particelle viene simulato parallelamente al flusso, risolvendo le equazioni del moto. Oltre al moto delle particelle viene modellata anche la collisione di queste su pareti rigide modellate tramite il metodo IBM e grazie alle proprietà della Signed Distance Function. Il metodo numerico sviluppato per il progetto di tesi viene validato tramite confronto qualitativo con i risultati disponibili in letteratura, in particolare viene testato il flusso attorno ad un cilindro.
Development of a particle tracking method for complex flow geometries
MARTINUZZO, LORENZO
2023/2024
Abstract
Turbulent and multiphase flows have a fundamental role in the design phase not only in the engineering field. Nowadays, the investigation of such flows is mainly based on the numerical simulations, thanks to lower costs, times and complexity compare to experimental investigations. In this thesis project, multiphase flows are considered, with a generic fluid as carrier and solid particles as secondary phase. Since dilute condition are hypothesized, one-way fluid-particle coupling is used. The flow is simulated with the Direct Numerical Simulation (DNS) implemented in CaNS, an open-source code. For the purposes of simulating complex flow geometries, an Immersed Boundary Method (IBM) is adopted, in particular an Eikonal equation IBM is used, coupled with a Signed Distance Function. The particles motion is simulated in parallel to the flow by solving the equations of motion. In addition to the particle motion, also the collision over rigid bodies is modelled. These rigid walls are modelled with the IMB, taking advantage of the Signed Distance Function properties. The numerical method developed for this thesis project is validate through a qualitative comparison with results available in literature, in particular the flow over a cylinder is tested.File | Dimensione | Formato | |
---|---|---|---|
Martinuzzo_Lorenzo.pdf
accesso aperto
Dimensione
20.26 MB
Formato
Adobe PDF
|
20.26 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/69387