The increasing demand for electrical energy and the need to reduce transmission losses are driving the energy industry towards the adoption of advanced technologies for power distribution. Superconducting cables represent a promising solution due to their ability to carry high current densities with negligible resistive losses. This thesis explores the use of superconducting cables for both alternating current (AC) and direct current (DC) power transmission. The first part of the thesis provides an overview of the fundamental properties of superconducting materials, with a particular focus on high-temperature superconductors (HTS). Subsequently, practical applications of superconducting cables in power transmission are examined. For alternating current, the challenges related to managing AC losses and magnetic instabilities are analyzed. For direct current, the advantages in terms of reduced resistive losses and increased transmission capacity are evaluated, with particular attention to HVDC (High Voltage Direct Current) systems. The results indicate that the adoption of superconducting cables for power transmission, both in AC and DC, offers significant advantages in terms of efficiency and sustainability, making them a key technology for the future of electrical infrastructure.
La crescente domanda di energia elettrica e la necessità di ridurre le perdite di trasmissione stanno spingendo l'industria energetica verso l'adozione di tecnologie avanzate per la distribuzione di energia. I cavi superconduttivi rappresentano una soluzione promettente grazie alla loro capacità di trasportare elevate densità di corrente con perdite resistive trascurabili. Questo lavoro di tesi esplora l'uso di cavi superconduttivi per la trasmissione di potenza sia in corrente alternata (AC) che in corrente continua (DC). Nella prima parte della tesi, viene fornita una panoramica delle proprietà fondamentali dei materiali superconduttivi, con particolare attenzione ai superconduttori ad alta temperatura critica (HTS). Successivamente, vengono esaminate le applicazioni pratiche dei cavi superconduttivi nella trasmissione di potenza. Per la corrente alternata, si analizzano le sfide legate alla gestione delle perdite di ac e alle instabilità magnetiche. Per la corrente continua, vengono valutati i vantaggi in termini di riduzione delle perdite resistive e di incremento della capacità di trasporto, con particolare attenzione ai sistemi di trasmissione HVDC (High Voltage Direct Current). I risultati ottenuti indicano che l'adozione di cavi superconduttivi per la trasmissione di potenza, sia in AC che in DC, offre significativi vantaggi in termini di efficienza e sostenibilità, rendendoli una tecnologia chiave per il futuro delle infrastrutture elettriche.
Cavi superconduttivi per la trasmissione di potenza in corrente alternata e continua
YU, FABIO
2023/2024
Abstract
The increasing demand for electrical energy and the need to reduce transmission losses are driving the energy industry towards the adoption of advanced technologies for power distribution. Superconducting cables represent a promising solution due to their ability to carry high current densities with negligible resistive losses. This thesis explores the use of superconducting cables for both alternating current (AC) and direct current (DC) power transmission. The first part of the thesis provides an overview of the fundamental properties of superconducting materials, with a particular focus on high-temperature superconductors (HTS). Subsequently, practical applications of superconducting cables in power transmission are examined. For alternating current, the challenges related to managing AC losses and magnetic instabilities are analyzed. For direct current, the advantages in terms of reduced resistive losses and increased transmission capacity are evaluated, with particular attention to HVDC (High Voltage Direct Current) systems. The results indicate that the adoption of superconducting cables for power transmission, both in AC and DC, offers significant advantages in terms of efficiency and sustainability, making them a key technology for the future of electrical infrastructure.File | Dimensione | Formato | |
---|---|---|---|
YU_FABIOpptx_pdfA.pdf
accesso riservato
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/71520