The thesis is the result of collaboration with the 'J2050' team from the University of Padua, whose mission 'Red Pill' was selected by the European Space Agency for the 'Fly Your Satellite!' project. Thermal control of a picosatellite is essential for the optimal functioning of its systems during the space mission. The internal components have well-defined operational and survival temperature ranges, and the accuracy of analyses and technical solutions is crucial for the correct operation of these components and the success of the mission. This thesis explores thermal control techniques and solutions specific to picosatellites, which, due to their small size and limited energy resources, require innovative and efficient approaches. The research begins with an overview of the fundamental principles of thermal balance in space, analyzing external and internal heat sources that influence the picosatellite. Subsequently, passive technologies such as thermal reflective coatings, multilayer insulation, and thermal bridges are examined, highlighting their advantages and limitations in the context of a picosatellite. The thesis also analyzes the importance of thermal modeling and simulation in the design process, using advanced software to predict the thermal behavior of the satellite under various operational conditions. In conclusion, the thesis offers recommendations for the design of future picosatellites, emphasizing the importance of an integrated approach to thermal control to ensure the longevity and reliability of small-scale space missions.
L’elaborato è frutto della collaborazione con il team ‘J2050’ dell’Unversità degli Studi di Padova, la cui missione ‘Red Pill’ è stata selezionata dall’ European Space Agency per il progetto ‘Fly Your Satellite!'. Il controllo termico di un picosatellite è essenziale per il funzionamento ottimale dei suoi sistemi durante la missione spaziale. Le componenti interne hanno range termici operativi e di sopravvivenza ben definiti, l'accuratezza delle analisi e delle soluzioni tecniche sono fondamentali per il corretto funzionamento delle componenti e la riuscita della missione. Questa tesi esplora tecniche e soluzioni di controllo termico specifiche per picosatelliti, che, a causa delle loro dimensioni ridotte e delle limitate risorse energetiche, richiedono approcci innovativi ed efficienti. La ricerca inizia con una panoramica dei principi fondamentali del bilancio termico nello spazio, analizzando le fonti di calore esterne ed interne che influenzano il picosatellite. Successivamente, vengono esaminate tecnologie passive come rivestimenti termoriflettenti, multistrati isolanti e ponti termici, evidenziando vantaggi e limiti nel contesto di un picosatellite. La tesi analizza inoltre l'importanza della modellazione e simulazione termica nel processo di progettazione, utilizzando software avanzati per prevedere il comportamento termico del satellite in diverse condizioni operative. In conclusione, la tesi offre raccomandazioni per la progettazione di futuri picosatelliti, sottolineando l'importanza di un approccio integrato al controllo termico per garantire la longevità e l'affidabilità delle missioni spaziali di piccola scala.
Modelli e simulazioni per l’analisi termica di picosatelliti
FRANCHINI, LORENZO PAOLO
2023/2024
Abstract
The thesis is the result of collaboration with the 'J2050' team from the University of Padua, whose mission 'Red Pill' was selected by the European Space Agency for the 'Fly Your Satellite!' project. Thermal control of a picosatellite is essential for the optimal functioning of its systems during the space mission. The internal components have well-defined operational and survival temperature ranges, and the accuracy of analyses and technical solutions is crucial for the correct operation of these components and the success of the mission. This thesis explores thermal control techniques and solutions specific to picosatellites, which, due to their small size and limited energy resources, require innovative and efficient approaches. The research begins with an overview of the fundamental principles of thermal balance in space, analyzing external and internal heat sources that influence the picosatellite. Subsequently, passive technologies such as thermal reflective coatings, multilayer insulation, and thermal bridges are examined, highlighting their advantages and limitations in the context of a picosatellite. The thesis also analyzes the importance of thermal modeling and simulation in the design process, using advanced software to predict the thermal behavior of the satellite under various operational conditions. In conclusion, the thesis offers recommendations for the design of future picosatellites, emphasizing the importance of an integrated approach to thermal control to ensure the longevity and reliability of small-scale space missions.File | Dimensione | Formato | |
---|---|---|---|
Elaborato_finale_triennale_lorenzo_franchini.pdf
accesso riservato
Dimensione
2.9 MB
Formato
Adobe PDF
|
2.9 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/72303