The purpose of this thesis is to analyze and deal with vectored propulsion technologies and the consequent aeronautical and space applications, starting from the fact that with the world wars aviation experienced a very rapid development, first through a war use of aircraft, subsequently with the birth and the great diffusion of airlines. Increasingly sophisticated aircraft began to emphasize maneuverability over speed to succeed in aerial combat. The factors of control and power in this phase begin to generate forces that contribute both in terms of maneuverability and thrust. Therefore, design techniques are developed and allow the thrust vector to be modulated in direction, thus allowing generic flight trajectories and not just straight lines on the local vertical. We will therefore deal with the vectored thrust defined as the ability of an airplane or other vehicle to direct the propulsion of its engine in a direction different from the one parallel to its longitudinal axis. Aircraft with this technology can be divided into aircraft with “pure” and “partial” thrust. The discussion will continue considering that within the aeronautical propulsion systems, the most studied component for the application of this kind of thrust is the exhaust duct. An initial classification of the nozzles can be carried out taking into consideration the geometry of the duct, which in the simplest apparatuses can be fixed, while in more complex systems it can be variable. Always considering the geometry, we will deal with converging or converging-divergent ducts. Analyzing the advantages we see that modern “pure vectored” aircraft are safer and easier to handle in terms of maneuverability compared to partial thrust vectored aircraft. A further positive aspect consists in the fact that the cargo and civil aircraft industries could introduce and implement these methodologies in the development of new aircraft in order to obtain lower resistance, lower fuel consumption and better take-off and landing performance. In conclusion, it is found that the different applications are a consequence of the fact that vectored thrust constitutes a versatile system that can be used in different contexts. In particular, in aerial combat: aircraft such as the Lockheed F-22 Raptor were designed to establish air superiority and dominate airspace precisely through a system of increased maneuverability provided by thrust direction. However, there are further fields of application of this technology, from missiles to particular helicopter systems, such as the Notar, up to the space context, including rocket systems and lunar modules.
Lo scopo di questa tesi è quello di analizzare e trattare le tecnologie di propulsione vettoriale e le conseguenti applicazioni in ambito aeronautico e spaziale, partendo dal fatto che con le guerre mondiali l’aviazione conobbe uno sviluppo rapidissimo, dapprima tramite un uso bellico dei velivoli, successivamente con la nascita e la grande diffusione di compagnie aree. I velivoli, sempre più sofisticati, iniziarono ad enfatizzare la manovrabilità piuttosto che la velocità per riuscire nel combattimento aereo. I fattori controllo e potenza in questa fase cominciano a generare forze che contribuiscono sia in termini di manovrabilità che in termini di spinta. Vengono quindi sviluppate delle tecniche di progettazione che consentono di modulare, in direzione, il vettore spinta, permettendo quindi traiettorie di volo generiche e non solo rettilinee sulla verticale locale. Si tratterà quindi la spinta vettoriale definita come l'abilità di un aeroplano o di un altro veicolo di dirigere la propulsione del proprio motore in una direzione differente da quella parallela al proprio asse longitudinale. Gli aerei con questa tecnologia possono essere suddivisi in quelli a spinta vettoriale “pura” e “parziale”. Si continuerà la trattazione considerando che all’interno degli impianti propulsivi aeronautici, il componente di maggiore studio per l’applicazione della spinta vettoriale è il condotto di scarico. Una prima classificazione degli ugelli può essere effettuata tenendo in considerazione la geometria del condotto, che negli apparati più semplici può essere fissa, mentre in sistemi più complessi può essere variabile. Sempre considerando la geometria, si tratteranno i condotti convergenti o convergenti-divergenti. Analizzando i vantaggi vediamo che gli aerei “pure vectored” moderni sono più sicuri e facili da gestire in termini di manovrabilità in paragone ai velivoli a spinta vettoriale parziale. Un ulteriore aspetto positivo consiste nel fatto che le industrie di aerei cargo e civili potrebbero introdurre ed implementare queste metodologie nello sviluppo di nuovi velivoli in modo da ottenere minore resistenza, minori consumi e maggiori prestazioni in decollo e atterraggio. A conclusione si riscontra che le diverse applicazioni sono una conseguenza del fatto che la spinta vettoriale costituisce un sistema versatile che può essere impiegato in diversi contesti. In particolare, nel combattimento aereo: velivoli come il Lockheed F-22 Raptor sono stati progettati per stabilire superiorità aerea e dominare gli spazi aerei proprio attraverso un sistema di manovrabilità aumentata fornita dal direzionamento della spinta. Vi sono tuttavia ulteriori campi applicativi di tale tecnologia, dai missili ad impianti elicotteristici particolari, come i Notar, fino ad arrivare al contesto spaziale, includendo sistemi a razzo e moduli lunari.
Tecnologie di propulsione vettoriale, applicazioni in ambito aeronautico e spaziale
MIANI, GIADA
2023/2024
Abstract
The purpose of this thesis is to analyze and deal with vectored propulsion technologies and the consequent aeronautical and space applications, starting from the fact that with the world wars aviation experienced a very rapid development, first through a war use of aircraft, subsequently with the birth and the great diffusion of airlines. Increasingly sophisticated aircraft began to emphasize maneuverability over speed to succeed in aerial combat. The factors of control and power in this phase begin to generate forces that contribute both in terms of maneuverability and thrust. Therefore, design techniques are developed and allow the thrust vector to be modulated in direction, thus allowing generic flight trajectories and not just straight lines on the local vertical. We will therefore deal with the vectored thrust defined as the ability of an airplane or other vehicle to direct the propulsion of its engine in a direction different from the one parallel to its longitudinal axis. Aircraft with this technology can be divided into aircraft with “pure” and “partial” thrust. The discussion will continue considering that within the aeronautical propulsion systems, the most studied component for the application of this kind of thrust is the exhaust duct. An initial classification of the nozzles can be carried out taking into consideration the geometry of the duct, which in the simplest apparatuses can be fixed, while in more complex systems it can be variable. Always considering the geometry, we will deal with converging or converging-divergent ducts. Analyzing the advantages we see that modern “pure vectored” aircraft are safer and easier to handle in terms of maneuverability compared to partial thrust vectored aircraft. A further positive aspect consists in the fact that the cargo and civil aircraft industries could introduce and implement these methodologies in the development of new aircraft in order to obtain lower resistance, lower fuel consumption and better take-off and landing performance. In conclusion, it is found that the different applications are a consequence of the fact that vectored thrust constitutes a versatile system that can be used in different contexts. In particular, in aerial combat: aircraft such as the Lockheed F-22 Raptor were designed to establish air superiority and dominate airspace precisely through a system of increased maneuverability provided by thrust direction. However, there are further fields of application of this technology, from missiles to particular helicopter systems, such as the Notar, up to the space context, including rocket systems and lunar modules.File | Dimensione | Formato | |
---|---|---|---|
Miani_Giada.pdf
accesso riservato
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/72322