Animal welfare is more and more a key topic of livestock husbandry, and therefore is essential for a farmer to know the situation of their barn in the light of the increasing pressure on the subject by the public opinion. Over the course of the years the different critical issues of the animal farms have been studied and various methods of animal welfare evaluation have been proposed, like the Animals Needs Index (ANI), used for beef cattle in Austria and Germany in the 90s, and the Welfare Quality, which introduced the analysis of animal-based measured (ABMs), that represents the animals’ response to the environment in which they live. In Italy the Ministry of Health created a tool for animal welfare evaluation on farm called Classyfarm. This system, using specific checklists, can evaluate the state of welfare of all species and categories of livestock husbandry and gather all the other information regarding biosecurity and antimicrobics use. The scores assigned to a farm can be compared to the mean values of the same animal category at regional and national level. This thesis work dealt with beef cattle, a sector that in Italy involves almost 1.5 million head of which more than two thirds are imported. In this paper, the scores of a sample of 49 farms are used, respectively, for three different categories of indicators: Structures, Management and Animal-Based Measures (ABMs). Structures evaluates the risk that the types of stabling used for the farm do not allow the full expression of the species behaviour and are not suitable to manage particular situations like accidents, diseases and animal handling. Management gathers information about the actions of the barn operators, the adequacy of their number in relation to the number of animals and their training concerning the daily activities. Lastly, ABMs evaluate, as already reported, how animals respond to the environment in which they live and therefore if they show diseases, anomalies in their behaviour or physiological disorders. By using k-means clustering, a mathematical process that grouped the data of the different farms into different aggregates, called clusters, it was possible to group the farms into three clusters, whose weaknesses were then identified in relation to the different variables on the Classyfarm check list. The analysis of the three clusters showed that the greatest critical points concerned the structures, although these did not particularly affect the response of the animals, which was always very positive, thanks to the good management of the animals reared.
Il benessere animale è sempre più un tema centrale nell’allevamento degli animali da reddito ed è quindi fondamentale per un produttore poter conoscere la situazione della propria stalla alla luce delle crescenti pressioni su tale argomento da parte dell’opinione pubblica. Negli anni sono state analizzate le diverse criticità che si possono riscontrare all’interno degli allevamenti e sono stati proposti vari metodi di valutazione del benessere, come l’Animals Needs Index (ANI), utilizzato per i bovini da carne in Austria e in Germania negli anni ’90, e il Welfare Quality, il quale rispetto alle metodologie precedenti poneva attenzione sulle animal-based measures (ABMs), ovvero le risposte che gli animali danno in base all’ambiente in cui vivono. In Italia il Ministero della Salute ha messo a punto uno strumento per la valutazione del benessere animale in allevamento che prende il nome di Classyfarm. Questo sistema, attraverso specifiche check list, permette di valutare lo stato di benessere di tutte le specie e categorie di animali di interesse zootecnico e raccoglie anche altre informazioni che riguardano la biosicurezza e l’uso degli antimicrobici. I punteggi assegnati ad una azienda possono essere messi a confronto con i valori medi rilevati per la stessa tipologia di animali a livello regionale e nazionale. Il presente lavoro di tesi si è occupato del bovino da carne, un settore che in Italia coinvolge quasi 1,5 milioni di capi di cui oltre due terzi d’importazione. In questo elaborato vengono utilizzati i punteggi di un campione di 49 aziende, rispettivamente per tre diverse categorie di indicatori: le Strutture, il Management e le Animal-Based Measures (ABMs). Le prime valutano il rischio che le tipologie di stabulazione adottate in azienda non permettano la completa espressione dei comportamenti della specie e non siano adatte a gestire situazioni particolari come gli infortuni, le malattie e la movimentazione degli animali. Il management raccoglie informazioni sulle azioni degli operatori di stalla, l’adeguatezza del loro numero in relazione al numero di capi e la loro formazione per quanto riguarda le attività che svolgono quotidianamente. Le ABMs valutano infine, come già riportato, in che modo gli animali rispondono all’ambiente in cui vivono e quindi se presentino patologie, anomalie nei comportamenti o alterazioni della loro normale fisiologia. Facendo uso del k-means clustering, un processo matematico che ha raggruppato i dati delle diverse aziende in differenti aggregati, detti cluster, è stato possibile aggregare le aziende in tre gruppi, di cui si sono poi individuati i punti di debolezza relativamente alle diverse variabili presenti nella check list di Classyfarm. L’analisi dei tre cluster ha evidenziato che le maggiori criticità hanno riguardato le strutture, seppur queste non influiscono particolarmente sulla risposta degli animali, che è risultata sempre molto positiva, grazie alla buona gestione dei capi allevati.
Applicazione del sistema Classyfarm nella valutazione del benessere del bovino da carne. Punti di forza e criticità di un campione di aziende.
QUAGLINI, ANDREA
2023/2024
Abstract
Animal welfare is more and more a key topic of livestock husbandry, and therefore is essential for a farmer to know the situation of their barn in the light of the increasing pressure on the subject by the public opinion. Over the course of the years the different critical issues of the animal farms have been studied and various methods of animal welfare evaluation have been proposed, like the Animals Needs Index (ANI), used for beef cattle in Austria and Germany in the 90s, and the Welfare Quality, which introduced the analysis of animal-based measured (ABMs), that represents the animals’ response to the environment in which they live. In Italy the Ministry of Health created a tool for animal welfare evaluation on farm called Classyfarm. This system, using specific checklists, can evaluate the state of welfare of all species and categories of livestock husbandry and gather all the other information regarding biosecurity and antimicrobics use. The scores assigned to a farm can be compared to the mean values of the same animal category at regional and national level. This thesis work dealt with beef cattle, a sector that in Italy involves almost 1.5 million head of which more than two thirds are imported. In this paper, the scores of a sample of 49 farms are used, respectively, for three different categories of indicators: Structures, Management and Animal-Based Measures (ABMs). Structures evaluates the risk that the types of stabling used for the farm do not allow the full expression of the species behaviour and are not suitable to manage particular situations like accidents, diseases and animal handling. Management gathers information about the actions of the barn operators, the adequacy of their number in relation to the number of animals and their training concerning the daily activities. Lastly, ABMs evaluate, as already reported, how animals respond to the environment in which they live and therefore if they show diseases, anomalies in their behaviour or physiological disorders. By using k-means clustering, a mathematical process that grouped the data of the different farms into different aggregates, called clusters, it was possible to group the farms into three clusters, whose weaknesses were then identified in relation to the different variables on the Classyfarm check list. The analysis of the three clusters showed that the greatest critical points concerned the structures, although these did not particularly affect the response of the animals, which was always very positive, thanks to the good management of the animals reared.File | Dimensione | Formato | |
---|---|---|---|
Quaglini_Andrea.pdf
accesso aperto
Dimensione
857.94 kB
Formato
Adobe PDF
|
857.94 kB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/72990