Wind energy is one of the most widespread renewable technologies, therefore, increasing wind turbine reliability is a crucial factor, especially nowadays when maintenance costs are high and climate change is a serious problem for the planet. In this thesis, the utilization of a novel fault tolerant control architecture based on Super Twisting Sliding Mode Control (ST-SMC) is investigated for a conventional Wind Turbine (WT) Hydraulic Pitch System (HPS). The thesis offers a description of the mathematical model of the system dynamics with an overview of the most common faults that can affect it. This is followed by a review of Sliding Mode Control (SMC) and its variants, including the adaptive versions (Adaptive Sliding Mode Control, A-SMC). The latter are capable of adjusting themselves in order to reject disturbances and unknown dynamics in the system while maintaining the desired accuracy. Then, the design of the Super Twisting Sliding Mode Controller and the Adaptive Super Twisting Sliding Mode Controller is derived. In addition, the thesis analyses the performance of the proposed controllers in both nominal case and faulty scenarios, using evaluation metrics. The results show great adaptation capabilities for the adaptive techniques, which in some cases outperform the conventional controller. Lastly, potential future research directions related to the project are suggested.
L’energia eolica è una delle tecnologie rinnovabili più diffuse, pertanto, l’aumento dell’affidabilità delle turbine eoliche è un fattore cruciale, soprattutto al giorno d’oggi i cui i costi di manutenzione sono elevati e le problematiche legate al cambiamento climatico rappresentano una questione rilevante per il pianeta. In questa tesi, viene studiato l’utilizzo di una nuova architettura di controllo a tolleranza di guasti basata sul Super Twisting Sliding Mode Control per un sistema idraulico di regolazione dell’angolo delle pale (Hydraulic Pitch System, HPS) convenzionale di una turbina eolica. La tesi offre una descrizione del modello matematico della dinamica del sistema con una panoramica dei guasti più frequenti che possono influenzarlo. Successivamente, viene presentato il concetto di Sliding Mode Control (SMC) e le sue varianti, comprese le versioni adattative (Adaptive Sliding Mode Control, A-SMC). Queste ultime sono in grado di adattarsi per respingere disturbi e dinamiche sconosciute del sistema, mantenendo allo stesso tempo l’accuratezza desiderata. In seguito, viene derivata la progettazione del Super Twisting Sliding Mode Controller e dell’Adaptive Super Twisting Sliding Mode Controller. Inoltre, vengono analizzate le prestazioni dei controllori proposti sia in condizioni nominali che in scenari con guasti utilizzando metriche di valutazione. I risultati mostrano grandi capacità di adattamento per le tecniche adattative, le quali in alcuni casi superano il controllore convenzionale. Infine, vengono suggerite le potenziali direzioni di ricerca futura per il progetto introdotto nella tesi.
Fault-Tolerant Adaptive Sliding Mode Control for Wind Turbine Hydraulic Pitch System
CRESCENTE, ISABELLA
2023/2024
Abstract
Wind energy is one of the most widespread renewable technologies, therefore, increasing wind turbine reliability is a crucial factor, especially nowadays when maintenance costs are high and climate change is a serious problem for the planet. In this thesis, the utilization of a novel fault tolerant control architecture based on Super Twisting Sliding Mode Control (ST-SMC) is investigated for a conventional Wind Turbine (WT) Hydraulic Pitch System (HPS). The thesis offers a description of the mathematical model of the system dynamics with an overview of the most common faults that can affect it. This is followed by a review of Sliding Mode Control (SMC) and its variants, including the adaptive versions (Adaptive Sliding Mode Control, A-SMC). The latter are capable of adjusting themselves in order to reject disturbances and unknown dynamics in the system while maintaining the desired accuracy. Then, the design of the Super Twisting Sliding Mode Controller and the Adaptive Super Twisting Sliding Mode Controller is derived. In addition, the thesis analyses the performance of the proposed controllers in both nominal case and faulty scenarios, using evaluation metrics. The results show great adaptation capabilities for the adaptive techniques, which in some cases outperform the conventional controller. Lastly, potential future research directions related to the project are suggested.File | Dimensione | Formato | |
---|---|---|---|
Crescente_Isabella.pdf
accesso aperto
Dimensione
12.93 MB
Formato
Adobe PDF
|
12.93 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/73279