Throughout the centuries, human beings have always searched among the objects around them for something that could serve to improve their quality-of-life following accidents or congenital malformations. It is important to remember that the first functional prosthesis, a big toe, can be traced back to the fifth Egyptian dynasty (2750-2625 B.C.), but many things have changed since then. The choice of random materials did not always prove to be the best option, as the resulting rudimentary prostheses were hardly ever biocompatible, e.g. the use of iron and wood very often caused adverse reactions. An approach that has become increasingly popular in the last decade concerns tissue engineering, i.e. the design and production of scaffolds integrated with cells that restore tissue function after implantation. Materials engineering has therefore come to support biomedical engineering by optimizing materials precisely based on the use to which the prosthesis is to be put, as scaffolds must be bioinert, biocompatible and biodegradable and respect the characteristics of the native tissue. This work aims to obtain titanite, also known as sphene (CaTiSiO5), a bioactive ceramic material due to its ability to interact favourably with biological tissues, particularly bone, promoting bone growth and the formation of tissue bonds. Bioactivity is linked to its chemical composition and crystalline structure as it contains calcium ions and is found to have better mechanical properties and greater stability than bioglass and calcium phosphate materials. The innovation of this work concerns the methodology used to obtain sphene, the emulsion between an oily phase based on resin and silicone products and an aqueous phase in which calcium crystals and titanium dioxide are dissolved as fillers. Mixtures from two calcic precursors were presented: the calcium nitrate tetrahydrate Ca(NO3)2∙4H2O and calcite CaCO3. In this work, scaffold moulding was carried out by means of Direct Ink Writing, an Additive Manufacturing technique that is particularly promising in the field of tissue engineering, which enables the moulding of biological materials as well as the creation of complex structures required for tissue growth and regeneration. The conversion of the polymer precursor takes place via heat treatment at temperatures between 1300°C and 1350°C. Following heat treatment, it will then be necessary to assess the composition of the material obtained, comparing the peaks of X-ray diffractometry analyses and characterizing it both mechanically, by performing mechanical compression tests, and physically, by assessing its density and porosity. Finally, the characterization of the microstructure will be performed by scanning electron microscopy.
Nel corso dei secoli, l'essere umano ha sempre cercato tra gli oggetti che lo circondavano qualcosa che potesse servire a migliorare la qualità della vita in seguito a incidenti o malformazioni congenite. È importante ricordare che la prima protesi funzionale, un alluce, può essere fatta risalire alla quinta dinastia egizia (2750-2625 a.C.), ma da allora molte cose sono cambiate. La scelta di materiali casuali non sempre si è rivelata l'opzione migliore, poiché le rudimentali protesi che ne derivavano risultavano quasi mai biocompatibili, ad esempio l’uso del ferro e del legno molto spesso provocavano reazioni avverse. Un approccio che si sta affermando sempre di più nell'ultimo decennio riguarda l'ingegneria tissutale, ovvero la progettazione e la produzione di impalcature integrate con cellule che ripristinano la funzione dei tessuti dopo l'impianto. L'ingegneria dei materiali è venuta quindi in supporto dell’ingegneria biomedica andando a ottimizzare i materiali proprio sulla base dell’uso che la protesi dovrà andare a svolgere, in quanto le impalcature devono essere bioinerti, biocompatibili e biodegradabili e rispettare le caratteristiche del tessuto nativo. Questo lavoro mira a ottenere la titanite, chiamata anche sfene (CaTiSiO5), un materiale ceramico bioattivo per la sua capacità di interagire favorevolmente con i tessuti biologici, in particolare le ossa, promuovendo la crescita ossea e la formazione di legami con i tessuti. La bioattività è legata alla sua composizione chimica e alla sua struttura cristallina in quanto contiene ioni calcio e risulta avere migliori proprietà meccaniche e maggiore stabilità rispetto ai materiali in biovetro e fosfato di calcio L'innovazione di questo lavoro riguarda la metodologia utilizzata per ottenere lo sfene, l'emulsione tra una fase oleosa a base di resina e prodotti siliconici e una fase acquosa in cui sono disciolti cristalli di calcio e biossido di titanio come fillers. Sono state presentate miscele a partire da due precursori calcici: il calcionitrato tetraidrato Ca(NO3)2∙4H2O e la calcite CaCO3. In questo lavoro lo stampaggio degli scaffold è stato eseguito mediante Direct Ink Writing, una tecnica di Additive Manufacturing particolarmente promettente nell'ambito dell'ingegneria tissutale che permette di stampare materiali biologici ma anche di creare strutture complesse necessarie per la crescita e la rigenerazione dei tessuti. La conversione del precursore polimerico avviene tramite trattamento termico a temperature comprese tra 1300°C e 1350°C. In seguito al trattamento termico sarà poi necessario valutare la composizione del materiale ottenuto, andando a confrontare i picchi delle analisi di diffrattometria ai raggi X e caratterizzarlo sia meccanicamente, effettuando prove meccaniche a compressione, ma anche fisicamente, valutandone la densità e la porosità. Infine, la caratterizzazione della microstruttura verrà eseguita tramite microscopia a scansione elettronica.
Direct ink writing of bioactive sphene ceramic scaffolds made of silicone-based emulsions
GUERRA, MARIA GIUSEPPA
2023/2024
Abstract
Throughout the centuries, human beings have always searched among the objects around them for something that could serve to improve their quality-of-life following accidents or congenital malformations. It is important to remember that the first functional prosthesis, a big toe, can be traced back to the fifth Egyptian dynasty (2750-2625 B.C.), but many things have changed since then. The choice of random materials did not always prove to be the best option, as the resulting rudimentary prostheses were hardly ever biocompatible, e.g. the use of iron and wood very often caused adverse reactions. An approach that has become increasingly popular in the last decade concerns tissue engineering, i.e. the design and production of scaffolds integrated with cells that restore tissue function after implantation. Materials engineering has therefore come to support biomedical engineering by optimizing materials precisely based on the use to which the prosthesis is to be put, as scaffolds must be bioinert, biocompatible and biodegradable and respect the characteristics of the native tissue. This work aims to obtain titanite, also known as sphene (CaTiSiO5), a bioactive ceramic material due to its ability to interact favourably with biological tissues, particularly bone, promoting bone growth and the formation of tissue bonds. Bioactivity is linked to its chemical composition and crystalline structure as it contains calcium ions and is found to have better mechanical properties and greater stability than bioglass and calcium phosphate materials. The innovation of this work concerns the methodology used to obtain sphene, the emulsion between an oily phase based on resin and silicone products and an aqueous phase in which calcium crystals and titanium dioxide are dissolved as fillers. Mixtures from two calcic precursors were presented: the calcium nitrate tetrahydrate Ca(NO3)2∙4H2O and calcite CaCO3. In this work, scaffold moulding was carried out by means of Direct Ink Writing, an Additive Manufacturing technique that is particularly promising in the field of tissue engineering, which enables the moulding of biological materials as well as the creation of complex structures required for tissue growth and regeneration. The conversion of the polymer precursor takes place via heat treatment at temperatures between 1300°C and 1350°C. Following heat treatment, it will then be necessary to assess the composition of the material obtained, comparing the peaks of X-ray diffractometry analyses and characterizing it both mechanically, by performing mechanical compression tests, and physically, by assessing its density and porosity. Finally, the characterization of the microstructure will be performed by scanning electron microscopy.File | Dimensione | Formato | |
---|---|---|---|
Guerra_MariaGiuseppa.pdf
accesso aperto
Dimensione
6.5 MB
Formato
Adobe PDF
|
6.5 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/73445