The gastrointestinal (GI) tract is the only internal organ that has evolved with its own independent nervous system, known as the enteric nervous system (ENS). The SNE controls various enteric functional processes including motility, epithelial secretion of fluids, ions and bioactive peptides, absorption of nutrients and drugs, and is able to integrate these with stimuli from the central nervous system (CNS) and the gut microbiota. Alterations in this complex interplay between the CNS, SNS, and microbiota can occur in several neurodegenerative diseases including multiple sclerosis (MS), a chronic inflammatory disease mediated by autoantibodies that attack brain components, damaging the CNS and causing a range of characteristic symptoms. In addition to disease-related symptoms in the CNS, most MS patients have disabling dysbiosis and gastrointestinal dysfunction that negatively impact their quality of life. Recent scientific evidence suggests that in MS patients there is a condition of degeneration of the SNS even before CNS lesions are observed, and in addition, the same data also indicate a possible association between MS and gut microbiota. This research project aims to evaluate the impact of the microbiota on the SNE in a mouse model of MS by inducing gut dysbiosis in mice (CPZ + ABX) treated with cuprizone (CPZ), a copper chelating neurotoxin that causes toxic demyelination, and with a mixture of broad-spectrum antibiotics (ABX) responsible for depletion of the gut microbiota. GI function was examined by in vivo analysis of GI motility and transit velocity and ex-vivo analysis of contractility using the isolated organ technique. In addition by immunohistochemical analysis with confocal microscopy, the structural integrity of the SNE was evaluated on Whole Mount ileal preparations from which the longitudinal musculature with attached myenteric plexus (LMMP) is isolated. The data obtained were compared with those from untreated mice (SHAM) and mice treated only with cuprizone (CPZ).
Il tratto gastrointestinale (GI) è l'unico organo interno che si è evoluto con un proprio sistema nervoso indipendente, noto come sistema nervoso enterico (SNE). Il SNE controlla vari processi funzionali enterici tra cui la motilità, la secrezione epiteliale di fluidi, ioni e peptidi bioattivi, l'assorbimento di sostanze nutritive e farmaci, ed è in grado di integrarli con gli stimoli provenienti dal sistema nervoso centrale (SNC) e dal microbiota intestinale. Alterazioni in questa complessa interazione tra SNC, SNE e microbiota possono verificarsi in diverse malattie neurodegenerative tra cui la sclerosi multipla (SM), una malattia infiammatoria cronica mediata da autoanticorpi che attaccano le componenti cerebrali danneggiando il SNC e causando una serie di sintomi caratteristici. Oltre ai sintomi correlati alla malattia nel SNC, la maggior parte dei pazienti con SM presenta disbiosi e disfunzioni gastrointestinali disabilitanti che hanno un impatto negativo sulla loro qualità di vita. Recenti evidenze scientifiche suggeriscono che nei pazienti affetti da SM ci sia una condizione di degenerazione del SNE prima ancora di osservare lesioni del SNC, e inoltre gli stessi dati indicano anche una possibile associazione tra SM e microbiota intestinale. Questo progetto di ricerca mira a valutare l’impatto del microbiota sul SNE in un modello murino di SM, inducendo disbiosi intestinale a topi (CPZ + ABX) trattati con cuprizone (CPZ), una neurotossina chelante il rame che causa demielinizzazione tossica, e con una miscela di antibiotici (ABX) a largo spettro, responsabile della deplezione del microbiota intestinale. La funzionalità GI è stata esaminata attraverso l’analisi in vivo della motilità e della velocità di transito GI e in ex-vivo della contrattilità con la tecnica dell’organo isolato. In aggiunta tramite analisi immunoistochimica con microscopia confocale, è stata valutata l’integrità strutturale del SNE su preparati ileali di Whole Mount da cui viene isolata la muscolatura longitudinale con annesso plesso mienterico (LMMP). I dati ottenuti sono stati confrontati con quelli di topi non trattati (SHAM) e di topi trattati solo con cuprizone (CPZ).
Impatto del microbiota nella neurodisfunzione enterica e centrale in un modello di demielinizzazione tossica
MAGAGNA, VANESSA
2023/2024
Abstract
The gastrointestinal (GI) tract is the only internal organ that has evolved with its own independent nervous system, known as the enteric nervous system (ENS). The SNE controls various enteric functional processes including motility, epithelial secretion of fluids, ions and bioactive peptides, absorption of nutrients and drugs, and is able to integrate these with stimuli from the central nervous system (CNS) and the gut microbiota. Alterations in this complex interplay between the CNS, SNS, and microbiota can occur in several neurodegenerative diseases including multiple sclerosis (MS), a chronic inflammatory disease mediated by autoantibodies that attack brain components, damaging the CNS and causing a range of characteristic symptoms. In addition to disease-related symptoms in the CNS, most MS patients have disabling dysbiosis and gastrointestinal dysfunction that negatively impact their quality of life. Recent scientific evidence suggests that in MS patients there is a condition of degeneration of the SNS even before CNS lesions are observed, and in addition, the same data also indicate a possible association between MS and gut microbiota. This research project aims to evaluate the impact of the microbiota on the SNE in a mouse model of MS by inducing gut dysbiosis in mice (CPZ + ABX) treated with cuprizone (CPZ), a copper chelating neurotoxin that causes toxic demyelination, and with a mixture of broad-spectrum antibiotics (ABX) responsible for depletion of the gut microbiota. GI function was examined by in vivo analysis of GI motility and transit velocity and ex-vivo analysis of contractility using the isolated organ technique. In addition by immunohistochemical analysis with confocal microscopy, the structural integrity of the SNE was evaluated on Whole Mount ileal preparations from which the longitudinal musculature with attached myenteric plexus (LMMP) is isolated. The data obtained were compared with those from untreated mice (SHAM) and mice treated only with cuprizone (CPZ).File | Dimensione | Formato | |
---|---|---|---|
Magagna_Vanessa.pdf
accesso riservato
Dimensione
3.24 MB
Formato
Adobe PDF
|
3.24 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/73564