Background Currently, cardiac computed tomography (CCT) plays a fundamental role in the pre-procedural planning of degenerative aortic valve stenosis (AS). CCT can provide valuable insights into coronary arteries (CAC), mitral annulus (MAC), aortic valve (AVC), and thoracic aorta (TAC) calcifications in patients with severe aortic stenosis (AS) planned for aortic valve replacement (AVR). However, the influence of these CCT-detected calcifications on patient’s cardiovascular outcomes remains unclear. Purpose Purpose of our study was to investigate whether the CAC, MAC, AVC and TAC score, in addition to the new total calcium (NTC) score, could influence major adverse cardiovascular events (MACE), all-cause and non-cardiovascular mortality for this population. Materials and Methods We conducted a retrospective study, evaluating 313 AS patients who underwent surgical or transcatheter VR between 2016 and 2018. We collected clinical and echocardiographic data and analyzed CCT scans using a semi-quantitative approach. We calculated CAC, MAC, TAC, and AVC scores. CACs were classified according to the 2022 Coronary Artery Disease-Reporting and Data System (CAD-RADS); MACs were defined following the Guerrero et al. study; AVCs according to the Win Registry. A new, holistic TAC score that incorporates characteristics of ascending, arch and descending aorta was applied. The new total calcium (NTC) values were derived by adding the scaled scores of the afore mentioned scores, and compared to traditional risk scores, and their predictive values were assessed. Results Our study population consisted of 313 patients (60.3% = female, mean age = 81). Cardiovascular risk was estimated for each patient using EuroScore II (2.83) and STS score (4.4). In univariate Cox models’ severe MAC score was significantly associated with MACE (HR 2.32, 95% CI [1.13-4.77], p=0.02), all-cause (HR 2.37, 95% CI [1.36-4.16], p< 0.0.001), and non-cardiovascular mortality (HR 2.09, 95% CI [1.05-4.16], p=0.03). Also, TAC score was a significant predictor for MACE (HR 1.49, 95% CI [1.01-2.20], p=0.04), all-cause (HR 1.63, 95% CI [1.19-2.24], p< 0.001), and non-cardiovascular mortality (HR 1.73, 95% CI [1.19-2.51], p< 0.001=0.004). Comparatively, the NTC score had a higher predictive capacity for MACE (HR 2.12, 95% CI [1.21-4.10]), all-cause (HR 2.46, 95% CI [1.52-3.99]), and non-cardiovascular mortality (HR 2.67, 95% CI [1.50-4.77]) compared to EuroScore II and STS risk scores. Conclusions In conclusion, CCT represents a valuable tool in assessing the risk of MACE, all-cause mortality and non-cardiovascular mortality in patients with severe degenerative AS undergoing VR. The newly derived CCT scores could represent promising, practical clinical tools; integrating these scores into routine practice could significantly improve the identification of AS patients requiring more intensive monitoring and follow-up. This type of evaluation can assist clinicians in pre-procedural planning and patient management, allowing for better identification of high-risk patients and optimization of therapeutic strategies.
Background La tomografia cardiaca computerizzata (TCC) attualmente svolge un ruolo fondamentale nel planning pre-procedurale della correzione della stenosi valvolare aortica (SVA) degenerativa-calcifica. La TCC può fornire informazioni preziose sulle calcificazioni delle arterie coronarie (CAC), dell'anello mitralico (MAC), della valvola aortica (CVA) e dell'aorta toracica (TAC) nei pazienti con SVA severa candidati ad intervento di sostituzione valvolare (SV). Tuttavia, l'influenza degli scores delle calcificazioni rilevate tramite TCC sugli outcomes cardiovascolari dei pazienti rimane ancora poco chiara. Scopo Scopo del nostro studio è stato valutare se gli scores CAC, MAC, CVA e TAC, presi singolarmente o raggruppati in un nuovo score, il New Total Calcium score (NTC), potrebbero influenzare gli eventi cardiovascolari maggiori (MACE), la mortalità per tutte le cause e la mortalità non-cardiovascolare in questa popolazione. Materiali e metodi Abbiamo condotto uno studio retrospettivo, valutando 313 pazienti con SVA severa sottoposti tra il 2016 e il 2018 a SV chirurgica o transcatetere. Abbiamo raccolto i dati clinici e strumentali e analizzato in modo semi-quantitativo le TCC pre-procedurali, calcolando gli scores CAC, MAC, TAC e CVA. Le CAC sono state classificate seguendo il sistema di valutazione visiva CAD-RADS proposto nel 2022; le MAC sono state definite secondo lo studio di Guerrero et al.; le CVA secondo il Win Registry. Abbiamo poi sviluppato ed utilizzato un nuovo punteggio TAC “olistico” che incorpora le caratteristiche dell'aorta ascendente, dell'arco aortico e dell'aorta discendente. Invece lo score NTC è stato ottenuti sommando i punteggi scalati degli score sopracitati. Di tutti questi score sono infine stati valutati i loro valori predittivi. Abbiamo poi confrontato l’NTC con gli score di rischio CV tradizionali. Risultati La nostra popolazione è formata da 313 pazienti (F= 60.3%, età media= 81 anni). Per ogni paziente è stato stimato il rischio cardiovascolare con l’EuroScoreII (2,83) e lo score STS (4,14). Nei modelli di Cox univariati, un MAC score severo è risultato statisticamente associato a MACE (HR 2,32, 95% CI [1,13-4,77], p=0,02), mortalità per tutte le cause (HR 2,37, 95% CI [1,36-4,16], p<0,001) e mortalità non-cardiovascolare (HR 2,09, 95% CI [1,05-4,16], p=0,03). Inoltre, lo score TAC è risultato un fattore predittivo significativo per MACE (HR 1,49, 95% CI [1,01-2,20], p=0,04), mortalità per tutte le cause (HR 1,63, 95% CI [1,19-2,24], p<0,001) e mortalità non-cardiovascolare (HR 1,73, 95% CI [1,19-2,51], p<0,001). Comparativamente, il punteggio NTC ha mostrato una capacità predittiva maggiore per MACE (HR 2,12, 95% CI [1,21-4,10]), mortalità per tutte le cause (HR 2,46, 95% CI [1,52-3,99]) e mortalità non-cardiovascolare (HR 2,67, 95% CI [1,50-4,77]) rispetto ai tradizionali score di rischio EuroScore II e STS. Conclusioni La TCC rappresenta uno strumento prezioso nel valutare il rischio di MACE, mortalità totale e mortalità non-cardiovascolare nei pazienti con SVA severa degenerativo-calcifica sottoposti a SV. I nuovi score derivati dalla TCC potrebbero rappresentare strumenti clinici promettenti e pratici; l’integrazione di questi scores nella pratica quotidiana potrebbe migliorare significativamente l'identificazione dei pazienti con SVA che richiedono un monitoraggio e un follow-up più intensivi. Questo tipo di valutazione potrebbe aiutare i clinici nella pianificazione pre-procedurale e nella gestione dei pazienti, consentendo una migliore identificazione dei pazienti ad alto rischio e un'ottimizzazione delle strategie terapeutiche.
Uso clinico della TC cardiaca come predittore del rischio cardiovascolare nei pazienti con stenosi valvolare aortica degenerativa-calcifica severa candidati a sostituzione valvolare: il New Total Calcium Score
MELOTTO, CRISTINA
2023/2024
Abstract
Background Currently, cardiac computed tomography (CCT) plays a fundamental role in the pre-procedural planning of degenerative aortic valve stenosis (AS). CCT can provide valuable insights into coronary arteries (CAC), mitral annulus (MAC), aortic valve (AVC), and thoracic aorta (TAC) calcifications in patients with severe aortic stenosis (AS) planned for aortic valve replacement (AVR). However, the influence of these CCT-detected calcifications on patient’s cardiovascular outcomes remains unclear. Purpose Purpose of our study was to investigate whether the CAC, MAC, AVC and TAC score, in addition to the new total calcium (NTC) score, could influence major adverse cardiovascular events (MACE), all-cause and non-cardiovascular mortality for this population. Materials and Methods We conducted a retrospective study, evaluating 313 AS patients who underwent surgical or transcatheter VR between 2016 and 2018. We collected clinical and echocardiographic data and analyzed CCT scans using a semi-quantitative approach. We calculated CAC, MAC, TAC, and AVC scores. CACs were classified according to the 2022 Coronary Artery Disease-Reporting and Data System (CAD-RADS); MACs were defined following the Guerrero et al. study; AVCs according to the Win Registry. A new, holistic TAC score that incorporates characteristics of ascending, arch and descending aorta was applied. The new total calcium (NTC) values were derived by adding the scaled scores of the afore mentioned scores, and compared to traditional risk scores, and their predictive values were assessed. Results Our study population consisted of 313 patients (60.3% = female, mean age = 81). Cardiovascular risk was estimated for each patient using EuroScore II (2.83) and STS score (4.4). In univariate Cox models’ severe MAC score was significantly associated with MACE (HR 2.32, 95% CI [1.13-4.77], p=0.02), all-cause (HR 2.37, 95% CI [1.36-4.16], p< 0.0.001), and non-cardiovascular mortality (HR 2.09, 95% CI [1.05-4.16], p=0.03). Also, TAC score was a significant predictor for MACE (HR 1.49, 95% CI [1.01-2.20], p=0.04), all-cause (HR 1.63, 95% CI [1.19-2.24], p< 0.001), and non-cardiovascular mortality (HR 1.73, 95% CI [1.19-2.51], p< 0.001=0.004). Comparatively, the NTC score had a higher predictive capacity for MACE (HR 2.12, 95% CI [1.21-4.10]), all-cause (HR 2.46, 95% CI [1.52-3.99]), and non-cardiovascular mortality (HR 2.67, 95% CI [1.50-4.77]) compared to EuroScore II and STS risk scores. Conclusions In conclusion, CCT represents a valuable tool in assessing the risk of MACE, all-cause mortality and non-cardiovascular mortality in patients with severe degenerative AS undergoing VR. The newly derived CCT scores could represent promising, practical clinical tools; integrating these scores into routine practice could significantly improve the identification of AS patients requiring more intensive monitoring and follow-up. This type of evaluation can assist clinicians in pre-procedural planning and patient management, allowing for better identification of high-risk patients and optimization of therapeutic strategies.File | Dimensione | Formato | |
---|---|---|---|
Melotto_Cristina.pdf
accesso aperto
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/73622