Since ancient times, the sintering process has played a crucial role in the scientific advancement of humanity. Controlling and developing its characteristics are fundamental. Although this process is based on very solid foundations, in recent decades it has undergone considerable innovations, leading to new discoveries that ensure economic savings, reduction in treatment times, and, most importantly, a decrease in CO2 emissions without degrading the final properties of the product. These objectives are particularly relevant in today's context, where the costs and emissions of traditional furnaces are prohibitive. This thesis provides a general overview of the sintering process of both traditional and innovative ceramic materials, which are essential for various modern applications and for the research of compounds with increasingly advanced properties, such as electrolytes for batteries or fuel cells. Subsequently, will be illustrated the mechanisms of rapid sintering and presents some of the innovative techniques introduced in recent years, with a detailed examination of the UHS (Ultrafast High-temperature Sintering) process. This process promises to achieve unprecedented efficiencies, heating rates, and temperatures, reducing the completion time from many hours, with high energy consumption, to just a few seconds and using little energy, all without altering the final properties if not improving them. However, given the novelty of the process, it is far from large-scale industrialization and requires greater understanding. For this reason, in the second part of the thesis, a traditional UHS process was reproduced in COMSOL, validating it with experimental tests available in the literature. The obtained model will provide a solid basis for studying the UHS process with other materials or with new geometries; thanks to the parameterization of the finite element model established. In the final part of this work, an innovative UHS technology is proposed, which transfers the standard process, that is based on heating by the Joule effect, to an induction mechanism, to overcome some issues of the traditional process. The feasibility and realizability of this technique will be evaluated by comparing it with the previous one. The evidence collected can be expanded in the future by physically realizing a device, allowing this new methodology to be tested not only through simulation but also tangibly.
Sin dall’antichità, il processo di sinterizzazione ha rivestito un’importanza cruciale nel progresso scientifico dell’umanità. Il controllo e lo sviluppo delle sue peculiarità sono fondamentali. Sebbene questo processo si basi su fondamenta molto solide, negli ultimi decenni ha subito innovazioni considerevoli, portando a nuove scoperte che garantiscono risparmi economici, riduzione dei tempi di trattamenti e, soprattutto, una diminuzione delle emissioni di CO2 senza degradazione delle proprietà finali del prodotto ultimato; questi obiettivi risultano particolarmente rilevanti nel contesto odierno in cui i costi e le emissioni dei forni tradizionali risultano proibitivi. Nel presente lavoro di tesi si offre una panoramica generale sul processo di sinterizzazione dei materiali ceramici, sia tradizionali che innovativi, essenziali per svariate applicazioni moderne e per la ricerca di composti dalle proprietà sempre più spinte come nel caso degli elettroliti per le batterie o per le fuel cell. Successivamente, si illustrano i meccanismi di sinterizzazione rapida e si espongono alcune delle tecniche innovative presentate negli ultimi anni, con una disamina dettagliata del processo di UHS (Ultrafast High-temperature Sintering), che promette di raggiungere efficienze, tassi di riscaldamento e temperature senza precedenti, portando il completamento del processo dalla durata di molte ore, con grandi consumi energetici a pochi secondi e utilizzando poca energia il tutto senza variazione delle proprietà finali, anzi, migliorandole. Tuttavia, data la novità del processo; esso è lontano dall’industrializzazione su larga strada e necessita di maggiore comprensione; per questo motivo, nella seconda parte del lavoro, si è deciso di riprodurre in ambiente COMSOL un processo di UHS tradizionale, validandolo con prove sperimentali presenti in letteratura. Il modello ottenuto fornirà una solida base per lo studio del processo UHS con altri materiali o con geometrie inedite grazie alla parametrizzazione del modello agli elementi finiti impostato. Nell’ultima parte di questo elaborato, si propone una tecnologia inedita di UHS che trasporta il processo standard, ovvero mediante riscaldamento per effetto Joule, a un meccanismo per induzione, al fine di superare alcune problematiche del processo tradizionale. Si valuterà la fattibilità e la realizzabilità di questa tecnica confrontandola con la precedente; le evidenze raccolte potranno essere ampliate in futuro mediante una realizzazione fisica di un dispositivo, permettendo così di testare, non solo tramite simulazione, ma anche in modo tangibile, questa nuova metodologia.
Analisi di sistemi di riscaldamento elettromagnetici per UHS
MARCONI, RUGGERO
2023/2024
Abstract
Since ancient times, the sintering process has played a crucial role in the scientific advancement of humanity. Controlling and developing its characteristics are fundamental. Although this process is based on very solid foundations, in recent decades it has undergone considerable innovations, leading to new discoveries that ensure economic savings, reduction in treatment times, and, most importantly, a decrease in CO2 emissions without degrading the final properties of the product. These objectives are particularly relevant in today's context, where the costs and emissions of traditional furnaces are prohibitive. This thesis provides a general overview of the sintering process of both traditional and innovative ceramic materials, which are essential for various modern applications and for the research of compounds with increasingly advanced properties, such as electrolytes for batteries or fuel cells. Subsequently, will be illustrated the mechanisms of rapid sintering and presents some of the innovative techniques introduced in recent years, with a detailed examination of the UHS (Ultrafast High-temperature Sintering) process. This process promises to achieve unprecedented efficiencies, heating rates, and temperatures, reducing the completion time from many hours, with high energy consumption, to just a few seconds and using little energy, all without altering the final properties if not improving them. However, given the novelty of the process, it is far from large-scale industrialization and requires greater understanding. For this reason, in the second part of the thesis, a traditional UHS process was reproduced in COMSOL, validating it with experimental tests available in the literature. The obtained model will provide a solid basis for studying the UHS process with other materials or with new geometries; thanks to the parameterization of the finite element model established. In the final part of this work, an innovative UHS technology is proposed, which transfers the standard process, that is based on heating by the Joule effect, to an induction mechanism, to overcome some issues of the traditional process. The feasibility and realizability of this technique will be evaluated by comparing it with the previous one. The evidence collected can be expanded in the future by physically realizing a device, allowing this new methodology to be tested not only through simulation but also tangibly.File | Dimensione | Formato | |
---|---|---|---|
Marconi_Ruggero.pdf
accesso aperto
Dimensione
29.71 MB
Formato
Adobe PDF
|
29.71 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/73783