Managing critical size defects that lead to the loss of large amounts of bony tissue represents a challenge in clinical practice. In cases of bone loss, finding a material capable of replacing the bone is crucial. Therefore, the fabrication of scaffolds for rapid and effective repair is a highly promising field of research. These implants provide essential structural support to the cells but also serve as templates that guide the growth and construction of new tissue. The aim of this thesis is to evaluate the bone regenerative capacity of 3D-printed PLA-Graphene scaffolds in a standardized rat calvarial model. The in-vivo study included 20 rats, each surgically treated to create two critical-sized circular defects with a diameter of 5 mm. One defect was filled with the PLA-graphene implant (test side), while the other was left unfilled (control side). The rats were sacrificed at two different time points: the first group of 10 rats after 4 weeks and the second group after 8 weeks post-operation. The ability of the printed scaffolds to regenerate cranial bone tissue was studied using micro-computed tomography and histological analysis of the collected samples. The micro-CT evaluation results showed a higher ratio of new bone volume to defect volume on the test side with the PLA-graphene implant compared to the control side. Additionally, the histological evaluation confirmed the good biocompatibility of the scaffold material and excellent osseointegration of the implant within the bone defect. In conclusion, the results of this study demonstrated that 3D-printed PLA-graphene scaffolds have significant potential for application in the treatment of calvarial defects and represent a viable alternative to currently used methods for the regeneration of bone defects, thanks to numerous advantages in biocompatibility and graft tolerability in patients.
La gestione di difetti di dimensione critica che portano alla perdita di elevate quantità di tessuto osseo rappresenta una sfida nella pratica clinica. In caso di perdita ossea, è cruciale trovare un materiale che sia in grado di sostituire l’osso. Pertanto, la fabbricazione di scaffold come sostegno per sostituire l’osso è un campo di ricerca molto promettente: questi impianti non solo forniscono un supporto strutturale essenziale alle cellule, ma fungono anche da modelli che guidano la crescita e la costruzione di nuovo tessuto. L’obiettivo di questo progetto di tesi consiste nella valutazione della capacità rigenerativa ossea di scaffold in PLA-grafene stampati in 3D in un modello standardizzato di calvaria di ratto. Sono stati inclusi nello studio in-vivo 20 ratti, ognuno dei quali è stato trattato chirurgicamente per la creazione di due difetti circolari di dimensione critica di 5 mm di diametro nella calvaria. Un difetto è stato riempito con l’impianto in PLA-grafene (lato test), mentre l’altro è stato lasciato libero (lato controllo). I ratti sono stati sacrificati in due momenti diversi, un primo gruppo di 10 ratti dopo 4 settimane e un secondo dopo 8 settimane dall’intervento. La capacità degli scaffold stampati di rigenerare il tessuto osseo del cranio è stata studiata utilizzando microtomografia computerizzata e analisi istologiche sui campioni prelevati. I risultati della valutazione micro-CT hanno evidenziato un rapporto superiore tra il volume di osso neoformato e il volume del difetto nel lato test rispetto al lato controllo. Inoltre, la valutazione istologica ha confermato la buona biocompatibilità del materiale dello scaffold con evidenza di osteointegrazione dell’impianto all’interno del difetto osseo. In conclusione, i risultati di questo studio hanno dimostrato che gli scaffold in PLA-grafene stampati in 3D possiedono un vasto potenziale di applicazione nel trattamento dei difetti della calvaria e rappresentano una valida alternativa ai metodi attualmente utilizzati per la rigenerazione di difetti ossei, grazie alla biocompatibilità e osteointegrazione dell’innesto nei difetti ossei.
Scaffold in PLA-Grafene stampato in 3D impiantato in un difetto di dimensioni critiche in calvaria di ratto: studio in vivo
PERSICO, ANNA
2023/2024
Abstract
Managing critical size defects that lead to the loss of large amounts of bony tissue represents a challenge in clinical practice. In cases of bone loss, finding a material capable of replacing the bone is crucial. Therefore, the fabrication of scaffolds for rapid and effective repair is a highly promising field of research. These implants provide essential structural support to the cells but also serve as templates that guide the growth and construction of new tissue. The aim of this thesis is to evaluate the bone regenerative capacity of 3D-printed PLA-Graphene scaffolds in a standardized rat calvarial model. The in-vivo study included 20 rats, each surgically treated to create two critical-sized circular defects with a diameter of 5 mm. One defect was filled with the PLA-graphene implant (test side), while the other was left unfilled (control side). The rats were sacrificed at two different time points: the first group of 10 rats after 4 weeks and the second group after 8 weeks post-operation. The ability of the printed scaffolds to regenerate cranial bone tissue was studied using micro-computed tomography and histological analysis of the collected samples. The micro-CT evaluation results showed a higher ratio of new bone volume to defect volume on the test side with the PLA-graphene implant compared to the control side. Additionally, the histological evaluation confirmed the good biocompatibility of the scaffold material and excellent osseointegration of the implant within the bone defect. In conclusion, the results of this study demonstrated that 3D-printed PLA-graphene scaffolds have significant potential for application in the treatment of calvarial defects and represent a viable alternative to currently used methods for the regeneration of bone defects, thanks to numerous advantages in biocompatibility and graft tolerability in patients.File | Dimensione | Formato | |
---|---|---|---|
Persico_Anna.pdf
embargo fino al 21/10/2027
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/74348