This paper examines the techniques and solutions proposed in recent studies on the integration of Concentrated Solar Power (CSP) in geothermal plants. Compared to traditional systems that use separate resources, the hybridization of these sources not only reduces infrastructure costs but also increases reliability and improves energy management. Aiming to identify design choices for optimizing performance, eleven CSP-geothermal plants reported in the literature were analyzed, comparing various parameters: energy and exergy efficiency, Levelized Cost of Energy (LCOE), capital recovery period, and the ratio between investment capital and installed electrical power. The plants were classified based on the type of geothermal system, the method of CSP integration, and the temperature of the geothermal well, which was identified as a crucial parameter for both comparison and design. The analysis showed that geothermal systems with well temperatures below 180°C can benefit, in terms of thermodynamic performance, from the adoption of binary cycle solutions. However, for temperatures above 170°C, the flash plants analyzed offer promising economic parameters, with an LCOE lower than 82 $/MWh. In systems with well temperatures below 200°C, parabolic trough collectors (PTC) were found to be the most suitable for integration. The use of solar heat in superheaters or evaporators of binary cycles and for heating the geothermal fluid resulted in an increase in exergy efficiency ranging from 3.06% to 6.16%. Solar tower systems with molten salts, when integrated into geothermal plants with source temperatures above 200°C, proved to be a valid alternative to PTC technology. Under these conditions, excellent performance was recorded, with exergy efficiencies exceeding 40%, when solar heat was used to superheat or evaporate the fluids from the flashing chambers. In the Tranamil Maripe et al. plant, the increase in installed CSP power and optimization of the configuration led not only to higher productivity (from 29.57 MW to 35.53 MW) but also to a slight improvement in LCOE (from 81.22 to 80.14 $/MWh) and exergy efficiency (from 40.22% to 40.82%). However, the initial cost per unit of installed power increased from 0.285 to 0.433 $/W. Multiproduction and cogeneration allow for optimal use of various energy levels. Despite the added complexity, such plants remain economically competitive: the systems analyzed, in fact, have a capital recovery period ranging from 2.34 to 5.76 years.
Questo elaborato considera le tecniche e le soluzioni proposte nei recenti studi di integrazione del solare a concentrazione (CSP) in impianti a fonte geotermica. Rispetto ai sistemi tradizionali, che utilizzano fonti separate, l'ibridazione di queste risorse consente non solo di ridurre i costi infrastrutturali, ma anche di aumentare l'affidabilità e migliorare la gestione dell'energia. Con l’obiettivo di individuare delle scelte progettuali di ottimizzazione delle performance, sono stati analizzati undici impianti CSP-geotermici presenti in letteratura, confrontando vari parametri: il rendimento energetico ed exergetico, il costo dell’energia livellato (LCOE), il periodo di recupero del capitale e il rapporto tra il capitale di investimento e la potenza elettrica installata. Gli impianti sono stati classificati in base alla tipologia del sistema geotermico, alla modalità di integrazione del CSP e alla temperatura del pozzo geotermico, che è stata identificata come un parametro cruciale sia per il confronto che per la progettazione. L'analisi ha mostrato che i sistemi geotermici con temperature del pozzo inferiori a 180°C possono beneficiare, in termini di prestazioni termodinamiche, dell'adozione di soluzioni a ciclo binario. Tuttavia, per temperature superiori a 170°C, gli impianti a flash analizzati offrono parametri economici promettenti, con LCOE inferiore a 82 $/MWh. Nei sistemi con pozzo a temperature inferiori a 200°C, il solare a collettori parabolici lineari (PTC) è risultato il più indicato per l’integrazione. L'impiego del calore solare nei surriscaldatori o negli evaporatori dei cicli binari e per il riscaldamento del fluido geotermico ha portato a un incremento dell’efficienza exergetica compresa tra il 3,06% e il 6,16%. I sistemi a torre solare a sali fusi, se integrati in impianti geotermici con temperature della fonte superiori a 200°C, si sono dimostrati una valida alternativa alla tecnologia PTC. In queste condizioni sono state registrate ottime performance, con rendimenti exergetici superiori al 40%, quando il solare viene impiegato per surriscaldare o evaporare i fluidi derivanti dalle camere di flashing. Nell’impianto di Tranamil Maripe et al. l’aumento della potenza CSP installata e l’ottimizzazione della configurazione hanno portato non solo a una maggiore produttività (da 29,57 a 35,53 MW), ma anche a un lieve miglioramento del LCOE (da 81,22 a 80,14 $/MWh) e dell’efficienza exergetica (da 40,22% a 40,82%). Tuttavia, il costo iniziale per unità di potenza installata è aumentato da 0,285 a 0,433 $/W. La multiproduzione e la cogenerazione consentono di sfruttare in modo ottimale diversi livelli energetici. Nonostante la maggiore complessità, tali impianti rimangono economicamente competitivi: i sistemi analizzati, infatti, presentano un periodo di ritorno del capitale di 2,34 e 5,76 anni.
Integrazione delle Tecnologie del Solare a Concentrazione in Impianti Geotermici
PARISI, MASSIMO
2023/2024
Abstract
This paper examines the techniques and solutions proposed in recent studies on the integration of Concentrated Solar Power (CSP) in geothermal plants. Compared to traditional systems that use separate resources, the hybridization of these sources not only reduces infrastructure costs but also increases reliability and improves energy management. Aiming to identify design choices for optimizing performance, eleven CSP-geothermal plants reported in the literature were analyzed, comparing various parameters: energy and exergy efficiency, Levelized Cost of Energy (LCOE), capital recovery period, and the ratio between investment capital and installed electrical power. The plants were classified based on the type of geothermal system, the method of CSP integration, and the temperature of the geothermal well, which was identified as a crucial parameter for both comparison and design. The analysis showed that geothermal systems with well temperatures below 180°C can benefit, in terms of thermodynamic performance, from the adoption of binary cycle solutions. However, for temperatures above 170°C, the flash plants analyzed offer promising economic parameters, with an LCOE lower than 82 $/MWh. In systems with well temperatures below 200°C, parabolic trough collectors (PTC) were found to be the most suitable for integration. The use of solar heat in superheaters or evaporators of binary cycles and for heating the geothermal fluid resulted in an increase in exergy efficiency ranging from 3.06% to 6.16%. Solar tower systems with molten salts, when integrated into geothermal plants with source temperatures above 200°C, proved to be a valid alternative to PTC technology. Under these conditions, excellent performance was recorded, with exergy efficiencies exceeding 40%, when solar heat was used to superheat or evaporate the fluids from the flashing chambers. In the Tranamil Maripe et al. plant, the increase in installed CSP power and optimization of the configuration led not only to higher productivity (from 29.57 MW to 35.53 MW) but also to a slight improvement in LCOE (from 81.22 to 80.14 $/MWh) and exergy efficiency (from 40.22% to 40.82%). However, the initial cost per unit of installed power increased from 0.285 to 0.433 $/W. Multiproduction and cogeneration allow for optimal use of various energy levels. Despite the added complexity, such plants remain economically competitive: the systems analyzed, in fact, have a capital recovery period ranging from 2.34 to 5.76 years.| File | Dimensione | Formato | |
|---|---|---|---|
|
Parisi_Massimo.pdf
Accesso riservato
Dimensione
1.79 MB
Formato
Adobe PDF
|
1.79 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/76523