In the first chapter we will exhibit a more generalized version of the De Giorgi method combined with the use of Harnack's inequality to show the iteration of Moser. Once proved the Hölder continuity we will conclude the solution to the Hilbert problem with the Calderon–Zygmund result. After exhibiting some applications of Harnack's inequality, in the last chapter we will shift our focus on proving a generalized version of Harnack's inequality for solutions of elliptic partial differential equation.

In the first chapter we will exhibit a more generalized version of the De Giorgi method combined with the use of Harnack's inequality to show the iteration of Moser. Once proved the Hölder continuity we will conclude the solution to the Hilbert problem with the Calderon–Zygmund result. After exhibiting some applications of Harnack's inequality, in the last chapter we will shift our focus on proving a generalized version of Harnack's inequality for solutions of elliptic partial differential equation.

Hölder continuity and Harnack's inequality for solutions of elliptic partial differential equation

DI FABIO, GIUSEPPE
2022/2023

Abstract

In the first chapter we will exhibit a more generalized version of the De Giorgi method combined with the use of Harnack's inequality to show the iteration of Moser. Once proved the Hölder continuity we will conclude the solution to the Hilbert problem with the Calderon–Zygmund result. After exhibiting some applications of Harnack's inequality, in the last chapter we will shift our focus on proving a generalized version of Harnack's inequality for solutions of elliptic partial differential equation.
2022
Hölder continuity and Harnack's inequality for solutions of elliptic partial differential equation
In the first chapter we will exhibit a more generalized version of the De Giorgi method combined with the use of Harnack's inequality to show the iteration of Moser. Once proved the Hölder continuity we will conclude the solution to the Hilbert problem with the Calderon–Zygmund result. After exhibiting some applications of Harnack's inequality, in the last chapter we will shift our focus on proving a generalized version of Harnack's inequality for solutions of elliptic partial differential equation.
Harnack
elliptic
inequality
Hölder continuity
File in questo prodotto:
File Dimensione Formato  
TesiDi_Fabio.pdf

accesso aperto

Dimensione 311.17 kB
Formato Adobe PDF
311.17 kB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/76685