Bones, fundamental structures of the human body, play a crucial role in protection, mechanical support, mineral storage, and blood cell production. However, pathological conditions such as osteoporosis or complex fractures compromise these functions, requiring innovative solutions for bone regeneration. This thesis focuses on the design of biomimetic three-dimensional scaffolds that mimic the characteristics of natural bone, balancing porosity, mechanical strength, and controlled degradation. The scaffold was modeled using a parametric approach based on Voronoi diagrams, implemented through Rhinoceros and Grasshopper. The results demonstrate how this approach enabled the generation of a realistic, well-defined, and customizable trabecular structure. Furthermore, this methodology allowed for the dynamic adjustment of key parameters, such as scaling factors, seed number, and box size, to analyze morphological effects, including porosity, pore size, connective channel size, and trabecular sections (in terms of diameter, area, perimeter, and shape index), ensuring the faithful replication of the architecture of natural bone. Through this analysis, an optimal scaffold configuration was identified, characterized by a box side of 2 mm, 57 seeds, scaling factors of Sf = 0.70 and Sv = 0.8. This configuration produced an optimal porosity of 80%, ensuring effective communication between pores without excessively compromising structural density, an average size of connective channels of 0.0386 mm, sufficient to promote permeability and vascularization, and an average diameter of trabecular sections of 0.105 mm, confirming the optimization of the configuration with sufficiently thick trabeculae to ensure structural stability while avoiding excessive reduction of solid material. Finally, the shape index, calculated based on the area and perimeter of the trabecular sections, with a value close to 1, indicates regular trabecular sections, resembling an ideal shape. The developed method enabled the design of a customizable three-dimensional scaffold capable of faithfully replicating the irregular morphology and structure of natural bone. Future developments include the modeling of cortical bone, integration with the trabecular structure, and the introduction of porosity gradients to simulate the natural transition between cortical and trabecular bone. Advanced mechanical simulations, based on finite element analysis, will be essential for optimizing the biomechanical response of the scaffolds. Additionally, the use of biocompatible materials, such as synthetic polymers and composites, and 3D printing technologies like stereolithography, represent key tools for translating digital models into highly personalized physical structures.
Le ossa, strutture fondamentali del corpo umano, svolgono un ruolo cruciale nella protezione, nel supporto meccanico, nella riserva minerale e nella produzione di cellule ematiche. Tuttavia, condizioni patologiche come l'osteoporosi o le fratture complesse compromettono queste funzioni, richiedendo soluzioni innovative per la rigenerazione ossea. Questa tesi si concentra sulla progettazione di scaffold tridimensionali biomimetici che imitano le caratteristiche dell’osso naturale, bilanciando porosità, resistenza meccanica e degradazione controllata. Lo scaffold è stato modellato utilizzando un approccio parametrico basato sui diagrammi di Voronoi, implementato attraverso Rhinoceros e Grasshopper. Dai risultati emerge come l’approccio utilizzato abbia permesso di generare una struttura trabecolare realistica, ben definita e personalizzabile. Inoltre questa metodologia ha consentito di regolare dinamicamente parametri chiave, come fattori di scala, numero di semi, e dimensione del box, per analizzare gli effetti morfologici, che includono porosità, dimensione dei pori, dimensione dei canali connettivi e sezioni trabecolari (in termini di diametro, area, perimetro e indice di forma), garantendo la replicazione fedele dell’architettura dell’osso naturale. Attraverso questa analisi è stata individuata una configurazione ottimale dello scaffold, caratterizzata da un lato box di 2mm, un numero di semi di 57, fattori di scalatura pari a Sf=0,70 e Sv=0,8. Questa configurazione ha prodotto una porosità ottimale dell’80%, che assicura un’efficace comunicazione tra i pori senza compromettere eccessivamente la densità strutturale, una dimensione media dei canali connettivi di 0.0386 mm, sufficiente per favorire la permeabilità e la vascolarizzazione, un diametro medio delle sezioni trabecolari di 0.105 mm , che conferma l’ottimizzazione della configurazione con trabecole sufficientemente spesse da garantire la stabilità strutturale, evitando la riduzione eccessiva del materiale solido. Infine anche l’indice di forma, calcolato tra area e perimetro delle sezioni trabecolari, con un valore prossimo a 1, indica sezioni trabecolari regolari, vicine ad una forma ideale. Il metodo sviluppato ha consentito di progettare uno scaffold tridimensionale personalizzabile, in grado di replicare fedelmente la morfologia e la struttura irregolare dell’osso naturale. Gli sviluppi futuri includono la modellazione dell’osso corticale, l’integrazione con la struttura trabecolare e l’introduzione di gradienti di porosità per simulare la transizione naturale tra corticale e trabecolare. Simulazioni meccaniche avanzate, basate sull’analisi agli elementi finiti, saranno fondamentali per ottimizzare la risposta biomeccanica degli scaffold. Inoltre, l’utilizzo di materiali biocompatibili, come polimeri sintetici e compositi, e tecnologie di stampa 3D, come la stereolitografia, rappresentano strumenti chiave per tradurre i modelli digitali in strutture fisiche altamente personalizzate.
Progettazione di scaffold basati sull’analisi morfologica dei tessuti ossei
GHISLENI, MARTINA
2023/2024
Abstract
Bones, fundamental structures of the human body, play a crucial role in protection, mechanical support, mineral storage, and blood cell production. However, pathological conditions such as osteoporosis or complex fractures compromise these functions, requiring innovative solutions for bone regeneration. This thesis focuses on the design of biomimetic three-dimensional scaffolds that mimic the characteristics of natural bone, balancing porosity, mechanical strength, and controlled degradation. The scaffold was modeled using a parametric approach based on Voronoi diagrams, implemented through Rhinoceros and Grasshopper. The results demonstrate how this approach enabled the generation of a realistic, well-defined, and customizable trabecular structure. Furthermore, this methodology allowed for the dynamic adjustment of key parameters, such as scaling factors, seed number, and box size, to analyze morphological effects, including porosity, pore size, connective channel size, and trabecular sections (in terms of diameter, area, perimeter, and shape index), ensuring the faithful replication of the architecture of natural bone. Through this analysis, an optimal scaffold configuration was identified, characterized by a box side of 2 mm, 57 seeds, scaling factors of Sf = 0.70 and Sv = 0.8. This configuration produced an optimal porosity of 80%, ensuring effective communication between pores without excessively compromising structural density, an average size of connective channels of 0.0386 mm, sufficient to promote permeability and vascularization, and an average diameter of trabecular sections of 0.105 mm, confirming the optimization of the configuration with sufficiently thick trabeculae to ensure structural stability while avoiding excessive reduction of solid material. Finally, the shape index, calculated based on the area and perimeter of the trabecular sections, with a value close to 1, indicates regular trabecular sections, resembling an ideal shape. The developed method enabled the design of a customizable three-dimensional scaffold capable of faithfully replicating the irregular morphology and structure of natural bone. Future developments include the modeling of cortical bone, integration with the trabecular structure, and the introduction of porosity gradients to simulate the natural transition between cortical and trabecular bone. Advanced mechanical simulations, based on finite element analysis, will be essential for optimizing the biomechanical response of the scaffolds. Additionally, the use of biocompatible materials, such as synthetic polymers and composites, and 3D printing technologies like stereolithography, represent key tools for translating digital models into highly personalized physical structures.File | Dimensione | Formato | |
---|---|---|---|
Ghisleni_Martina.pdf
accesso aperto
Dimensione
10.89 MB
Formato
Adobe PDF
|
10.89 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/77837