Nowadays, electronic devices play a crucial role in everyday life. However, their production depends on rare metals and materials that must be extracted from the Earth's surface, causing significant environmental damage and CO2 emissions. To address this issue, our society requires innovative energy solutions and sustainable technologies, such as bioelectronics and bioenergy alternatives. Cable bacteria, a recently discovered bacterium capable of long-distance electron transport, presents a promising opportunity for the development of bioelectronic technologies. Recent findings have demonstrated that conductivity in these bacteria is reliant on periplasmic conductive fibers. However, the structure of conductive fibers and the mechanism behind their conductivity remain unknown. In this study, we propose a systematic approach to extract and characterize periplasmic conductive fibers to elucidate their structure and conductive properties. We employ various physical (probe sonication, bath sonication, freeze-thaw cycles) and enzymatic (lysozyme, pronase) methods for the extraction process. Each method is evaluated for effectiveness using Transmission Electron Microscopy to assess the homogeneity and integrity and isolation of the conductive fibers. A deeper understanding of the structure-function relationship within these fibers could unlock new pathways for bioelectronic applications and advance our ability to harness biologically driven energy solutions.
Al giorno d'oggi, i dispositivi elettronici svolgono un ruolo cruciale nella vita quotidiana. Tuttavia, la loro produzione dipende da metalli rari e materiali che devono essere estratti dalla superficie terrestre, causando notevoli danni ambientali ed emissioni di CO2. Per affrontare questo problema, la nostra società necessita di soluzioni energetiche innovative e tecnologie sostenibili, come la bioelettronica e la bioenergia. I cable bacteria, un batterio recentemente scoperto capace di trasporto elettronico a lunga distanza, rappresentano una promettente opportunità per lo sviluppo di tecnologie bio-elettroniche. Recenti scoperte hanno dimostrato che la conduttività in questi batteri dipende da fibre periplasmiche conduttive. Tuttavia, la struttura di queste fibre conduttive e il meccanismo alla base della loro conduttività rimangono sconosciuti. In questo studio, viene proposto un approccio sistematico per estrarre e caratterizzare le fibre periplasmiche conduttive per chiarirne la struttura e le proprietà conduttive. Si impiegano vari metodi fisici (sonicazione a sonda, sonicazione a bagno, cicli di congelamento-scongelamento) ed enzimatici (lisozima, pronasi) per il processo di estrazione. Ogni metodo viene valutato per l'efficacia utilizzando la Microscopia Elettronica a Trasmissione per valutare l'omogeneità, l'integrità e l'isolamento delle fibre conduttive. Una comprensione più approfondita della relazione struttura-funzione di queste fibre potrebbe aprire nuove strade per le applicazioni bioelettroniche e avanzare la nostra capacità di sfruttare soluzioni energetiche guidate da processi biologici.
Development of an extraction method for the purification of the conductive fibers from cable bacteria
DI PRIMA, EMILIA
2023/2024
Abstract
Nowadays, electronic devices play a crucial role in everyday life. However, their production depends on rare metals and materials that must be extracted from the Earth's surface, causing significant environmental damage and CO2 emissions. To address this issue, our society requires innovative energy solutions and sustainable technologies, such as bioelectronics and bioenergy alternatives. Cable bacteria, a recently discovered bacterium capable of long-distance electron transport, presents a promising opportunity for the development of bioelectronic technologies. Recent findings have demonstrated that conductivity in these bacteria is reliant on periplasmic conductive fibers. However, the structure of conductive fibers and the mechanism behind their conductivity remain unknown. In this study, we propose a systematic approach to extract and characterize periplasmic conductive fibers to elucidate their structure and conductive properties. We employ various physical (probe sonication, bath sonication, freeze-thaw cycles) and enzymatic (lysozyme, pronase) methods for the extraction process. Each method is evaluated for effectiveness using Transmission Electron Microscopy to assess the homogeneity and integrity and isolation of the conductive fibers. A deeper understanding of the structure-function relationship within these fibers could unlock new pathways for bioelectronic applications and advance our ability to harness biologically driven energy solutions.File | Dimensione | Formato | |
---|---|---|---|
Di_Prima_Emilia.pdf
accesso riservato
Dimensione
7.49 MB
Formato
Adobe PDF
|
7.49 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/79727