The severity of the current climate crisis is unprecedented, and the transition toward renewable energy must accelerate its course to mitigate the consequences of overpopulation and rising temperatures. Scientists believe H2 can play a lead role in the transition to renewable energies, however, several technological downsides regarding its safe storage, handling, and transportation, hinder its feasibility as a fossil fuel alternative. Ammonia stands out as a carbon-free compound containing 17.7 wt % of H2, and it is considered a great alternative energy source carrier, bypassing critical technological and logistics limitations faced by hydrogen technology accessible up to date. The oxidation of this compound thus presents a viable alternative, as the reaction products are primarily nitrogen and water, or nitrogen and hydrogen, depending on the operating conditions.. Materials science plays a critical role in developing high performance and cost effective electrocatalyst to facilitate the exploitation of this energy vector. The main objective of this project was the synthesis and characterization of Ni-based materials and the study of their electrocatalytic activity toward ammonia oxidation (eAOR). This was done employing conventional and operando electrochemical techniques such as Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV) and Differential Electrochemical Mass Spectroscopy (DEMS). In addition to that, several physicochemical characterization techniques such as Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDX), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma Mass Spectroscopy (ICP-MS), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS) were employed to understand the structural and electronic properties of the samples, to allow for the correlation between their fundamental properties and their electrochemical response. Five different Ni(OH)2 morphologies were synthesized with solvothermal methods. It was found that the catalytic activity of the samples was confirmed mainly for two samples, that proved to be the most promising due to the synergic effect of Ni and Cu atoms left from the precursors. DEMS allowed precise detection of the products of the reaction. Nitrogen production was confirmed, and a potential dependency of the eAOR and an influence of the presence of the oxygen in the solution was observed.
La gravità della crisi climatica attuale è senza precedenti, e la transizione verso fonti di energia rinnovabile deve accelerare per mitigare le conseguenze del sovrappopolamento e dell'aumento delle temperature. Gli scienziati ritengono che l'idrogeno (H₂) possa svolgere un ruolo rilevante nella transizione verso le energie rinnovabili; tuttavia, diverse limitazioni tecnologiche legate al suo stoccaggio, alla sua gestione e al trasporto ancora ostacolano il suo impiego. L'ammoniaca emerge come un composto privo di carbonio contenente il 17,7% in peso di H₂, ed è considerata un eccellente vettore di energia alternativo, superando le limitazioni tecnologiche e logistiche di cui sopra. L’ossidazione di questo composto presenta quindi una valida alternativa essendo i prodotti di reazioni principalmente azoto e acqua, o azoto e idrogeno a seconda delle condizioni operative. La scienza dei materiali gioca un ruolo fondamentale nello sviluppo di elettrocatalizzatori ad alte prestazioni e a basso costo per facilitare l'utilizzo di questo vettore energetico. L'obiettivo principale di questo progetto è stato la sintesi e la caratterizzazione di materiali a base di Ni e lo studio della loro attività elettrocatalitica per l'ossidazione dell'ammoniaca (eAOR). Questo è stato realizzato utilizzando tecniche elettrochimiche convenzionali come la Voltammetria Ciclica (CV), la Voltammetria a Scansione Lineare (LSV) e tecniche in-situ come la Spettroscopia di Massa Elettrochimica Differenziale (DEMS). Inoltre, sono state impiegate diverse tecniche di caratterizzazione fisico-chimica, come la Microscopia Elettronica a Scansione (SEM), la Microscopia Elettronica in Trasmissione (TEM), la Spettrometria di Massa accoppiata al plasma (ICP-MS), la Diffrazione a Raggi X (XRD) e la Spettroscopia Fotoelettronica a Raggi X (XPS), per comprendere le proprietà strutturali ed elettroniche dei campioni e correlare le loro caratteristiche fondamentali con la risposta elettrochimica. Sono state sintetizzate cinque diverse morfologie di Ni(OH)₂ utilizzando metodi solvotermali. L'attività catalitica è stata confermata principalmente per due campioni, che si sono dimostrati i più promettenti grazie all'effetto sinergico tra atomi di Ni e Cu. Il DEMS ha permesso una rilevazione precisa dei prodotti della reazione. È stata confermata la produzione di azoto, e si è osservata una dipendenza del potenziale dell'eAOR, oltre a un'influenza della presenza di ossigeno nella soluzione.
Catalizzatori a base di Nickel per la reazione di ossidazione dell'ammoniaca
TREVISAN, MATTEO
2023/2024
Abstract
The severity of the current climate crisis is unprecedented, and the transition toward renewable energy must accelerate its course to mitigate the consequences of overpopulation and rising temperatures. Scientists believe H2 can play a lead role in the transition to renewable energies, however, several technological downsides regarding its safe storage, handling, and transportation, hinder its feasibility as a fossil fuel alternative. Ammonia stands out as a carbon-free compound containing 17.7 wt % of H2, and it is considered a great alternative energy source carrier, bypassing critical technological and logistics limitations faced by hydrogen technology accessible up to date. The oxidation of this compound thus presents a viable alternative, as the reaction products are primarily nitrogen and water, or nitrogen and hydrogen, depending on the operating conditions.. Materials science plays a critical role in developing high performance and cost effective electrocatalyst to facilitate the exploitation of this energy vector. The main objective of this project was the synthesis and characterization of Ni-based materials and the study of their electrocatalytic activity toward ammonia oxidation (eAOR). This was done employing conventional and operando electrochemical techniques such as Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV) and Differential Electrochemical Mass Spectroscopy (DEMS). In addition to that, several physicochemical characterization techniques such as Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDX), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma Mass Spectroscopy (ICP-MS), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS) were employed to understand the structural and electronic properties of the samples, to allow for the correlation between their fundamental properties and their electrochemical response. Five different Ni(OH)2 morphologies were synthesized with solvothermal methods. It was found that the catalytic activity of the samples was confirmed mainly for two samples, that proved to be the most promising due to the synergic effect of Ni and Cu atoms left from the precursors. DEMS allowed precise detection of the products of the reaction. Nitrogen production was confirmed, and a potential dependency of the eAOR and an influence of the presence of the oxygen in the solution was observed.File | Dimensione | Formato | |
---|---|---|---|
FULL THESIS MATTEO TREVISAN.pdf
accesso aperto
Dimensione
9.37 MB
Formato
Adobe PDF
|
9.37 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/80514