Peripheral nerves are delicate structures that are highly susceptible to damage caused by traumatic events or neurodegenerative processes. Injuries to peripheral nerves impair the sensory, motor, and autonomic functions of the affected area, significantly impacting the patient's quality of life. Several therapeutic approaches can be employed to restore the functional recovery of the injured nerve, all aimed at promoting the natural regenerative potential of the peripheral nervous system. Currently, the gold standard is autologous nerve grafting; however, its use is limited by factors such as donor site morbidity and the limited availability of suitable nerves for transplantation. These challenges have driven researchers to explore alternative therapeutic strategies, including nerve guidance conduits. These artificial structures, composed of natural or synthetic biopolymers, are designed to provide mechanical support and recreate a biological microenvironment conducive to nerve regeneration. This thesis aims to summarize the current state of art regarding the use of biologically derived scaffolds functionalized with proteins and peptides for peripheral nerve regeneration. It will present an overview of the main biologically derived biomaterials used as scaffolds for neuroregeneration, analysing their structure, mechanical and biological properties, and the techniques employed to functionalize nerve guidance conduits derived from them. Subsequently, the primary proteins and their peptide derivatives, which can be used to functionalize nerve guidance conduits, will be discussed. The essential roles of these proteins in the biological environment and the molecular mechanisms underlying their function will be described, followed by an examination of the bioactive effects these molecules exert during nerve regeneration. Finally, through the description of two case studies, the most recent scientific advancements and future perspectives of nerve regenerative medicine will be explored.
I nervi periferici sono strutture delicate, facilmente soggette a danni di natura traumatica o neurodegenerativa. Le lesioni dei nervi periferici compromettono le funzioni sensoriali, motorie e vegetative del distretto coinvolto, con un significativo impatto sulla qualità di vita del paziente. Per ottenere il recupero funzionale del nervo lesionato possono essere impiegati diversi approcci terapeutici, ognuno di questi con l’obiettivo di favorire il fisiologico potenziale rigenerativo del sistema nervoso periferico. Attualmente, il trattamento di riferimento è l’innesto autologo, ma le limitazioni al suo utilizzo, tra cui il danneggiamento del sito donatore e la disponibilità limitata di nervi adatti all’innesto, hanno portato i ricercatori ad individuare nuove strategie terapeutiche: i condotti per la guida nervosa. Queste strutture artificiali sono composte da biopolimeri naturali e sintetici e hanno lo scopo di fornire supporto meccanico e ricreare un microambiente biologico favorevole alla rigenerazione nervosa. Questa tesi si propone di riassumere lo stato dell’arte relativo all’utilizzo di scaffold biologici funzionalizzati con proteine e peptidi per la rigenerazione dei nervi periferici. Verrà presentata una panoramica dei principali biomateriali di origine biologica impiegati come scaffold per la neuro-rigenerazione, dei quali saranno analizzate la struttura, le proprietà meccaniche e biologiche e le tecniche per funzionalizzare i condotti nervosi ottenuti da essi. Successivamente, saranno esposte le principali proteine, ed i peptidi da esse derivati, con cui è possibile funzionalizzare un condotto per la guida nervosa. Verranno descritti i principali ruoli che tali proteine rivestono nell’ambiente biologico ed i meccanismi molecolari che ne stanno alla base; a seguire, saranno presentati gli effetti che queste molecole bioattive esplicano durante la rigenerazione dei nervi periferici. Infine, attraverso la descrizione di due casi studio, verranno esaminati i più recenti progressi scientifici e le prospettive future di questa tecnologia nel campo della medicina rigenerativa.
Biomateriali per la rigenerazione nervosa: scaffold biologici funzionalizzati con peptidi e proteine
RIZZI, PIETRO
2024/2025
Abstract
Peripheral nerves are delicate structures that are highly susceptible to damage caused by traumatic events or neurodegenerative processes. Injuries to peripheral nerves impair the sensory, motor, and autonomic functions of the affected area, significantly impacting the patient's quality of life. Several therapeutic approaches can be employed to restore the functional recovery of the injured nerve, all aimed at promoting the natural regenerative potential of the peripheral nervous system. Currently, the gold standard is autologous nerve grafting; however, its use is limited by factors such as donor site morbidity and the limited availability of suitable nerves for transplantation. These challenges have driven researchers to explore alternative therapeutic strategies, including nerve guidance conduits. These artificial structures, composed of natural or synthetic biopolymers, are designed to provide mechanical support and recreate a biological microenvironment conducive to nerve regeneration. This thesis aims to summarize the current state of art regarding the use of biologically derived scaffolds functionalized with proteins and peptides for peripheral nerve regeneration. It will present an overview of the main biologically derived biomaterials used as scaffolds for neuroregeneration, analysing their structure, mechanical and biological properties, and the techniques employed to functionalize nerve guidance conduits derived from them. Subsequently, the primary proteins and their peptide derivatives, which can be used to functionalize nerve guidance conduits, will be discussed. The essential roles of these proteins in the biological environment and the molecular mechanisms underlying their function will be described, followed by an examination of the bioactive effects these molecules exert during nerve regeneration. Finally, through the description of two case studies, the most recent scientific advancements and future perspectives of nerve regenerative medicine will be explored.| File | Dimensione | Formato | |
|---|---|---|---|
|
Rizzi_Pietro.pdf
accesso aperto
Dimensione
5.18 MB
Formato
Adobe PDF
|
5.18 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/82603