In recent years, artificial materials have become an increasingly valuable resource for the replacement of damaged tissues and organs. The success of a biomedical device depends on the careful selection of components capable of meeting specific requirements. Among these, mechanical strength, a low elastic modulus, and high biocompatibility stand out as essential for promoting bone cell adhesion and enabling rapid and effective healing. Titanium emerges as one of the most promising solutions for these applications due to its unique properties, but it is not sufficient on its own. To further enhance its performance, surface modification treatments such as sandblasting and acid etching are employed, optimizing osteointegration processes by acting on surface roughness and chemical composition. At the same time, nanoscale technologies are revolutionizing the sector by offering surfaces capable of multiplying cell interaction points. The combination of nanostructured surfaces with titanium has led to devices with superior performance, capable of reducing the risks of clinical failure and improving therapeutic efficacy. This study explores innovative strategies that integrate biology, engineering, and nanotechnology, outlining a future in which biomedical devices will become increasingly advanced and functional.
Negli ultimi anni, i materiali artificiali sono diventati una risorsa sempre più preziosa per la sostituzione di tessuti e organi compromessi. Il successo di un dispositivo biomedicale dipende dalla selezione accurata di componenti in grado di soddisfare requisiti specifici. Tra questi spiccano la resistenza meccanica, un basso modulo elastico e un’elevata biocompatibilità, indispensabili per promuovere l’adesione delle cellule ossee e favorire una guarigione rapida ed efficace. Il titanio emerge come una delle soluzioni più promettenti per queste applicazioni grazie alle sue proprietà uniche, ma da solo non basta. Per migliorarne ulteriormente le prestazioni, vengono adottati trattamenti di modifica superficiale, come sabbiature e incisioni con acidi, che ottimizzano i processi di osteointegrazione agendo sulla rugosità e sulla composizione chimica. Parallelamente, le tecnologie su scala nanometrica stanno rivoluzionando il settore, offrendo superfici in grado di moltiplicare i punti di interazione cellulare. L’unione di superfici nanostrutturate con il titanio ha permesso di ottenere dispositivi dalle prestazioni superiori, capaci di ridurre i rischi di insuccesso clinico e migliorare l’efficacia terapeutica. Questo studio esplora strategie innovative che uniscono biologia, ingegneria e nanotecnologia, delineando un futuro in cui i dispositivi biomedicali saranno sempre più avanzati e funzionali.
Superfici nanostrutturate di titanio e leghe per la promozione dell'osteointegrazione
VITALE, CATERINA
2024/2025
Abstract
In recent years, artificial materials have become an increasingly valuable resource for the replacement of damaged tissues and organs. The success of a biomedical device depends on the careful selection of components capable of meeting specific requirements. Among these, mechanical strength, a low elastic modulus, and high biocompatibility stand out as essential for promoting bone cell adhesion and enabling rapid and effective healing. Titanium emerges as one of the most promising solutions for these applications due to its unique properties, but it is not sufficient on its own. To further enhance its performance, surface modification treatments such as sandblasting and acid etching are employed, optimizing osteointegration processes by acting on surface roughness and chemical composition. At the same time, nanoscale technologies are revolutionizing the sector by offering surfaces capable of multiplying cell interaction points. The combination of nanostructured surfaces with titanium has led to devices with superior performance, capable of reducing the risks of clinical failure and improving therapeutic efficacy. This study explores innovative strategies that integrate biology, engineering, and nanotechnology, outlining a future in which biomedical devices will become increasingly advanced and functional.File | Dimensione | Formato | |
---|---|---|---|
Vitale_Caterina.pdf
accesso riservato
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/82611